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ABSTRACT

The stochastic analysis, modeling, and simulation of climatic and hydrologic processes such as precipitation,
streamflow, and sea surface temperature have usually been based on assumed stationarity or randomness of the
process under consideration. However, empirical evidence of many hydroclimatic data shows temporal variability
involving trends, oscillatory behavior, and sudden shifts. While many studies have been made for detecting and
testing the statistical significance of these special characteristics, the probabilistic framework for modeling the
temporal dynamics of such processes appears to be lacking. In this paper a family of stochastic models that can
be used to capture the dynamics of abrupt shifts in hydroclimatic time series is proposed. The applicability of
such ““ shifting mean models” areillustrated by using time series data of annual Pacific decadal oscillation (PDO)

indices and annual streamflows of the Niger River.

1. Introduction

On the annual timescale, the analysis of climatic and
hydrologic processes is generally based on assumed sta-
tionarity under a time series framework or randomness
under a probabilistic framework. While this assumption
may be reasonable within a short time frame (a few
decades depending on the particular case), empirical
evidence shows that most hydroclimatic processes de-
viate from stationarity in the long term. To some extent
the assumption of stationarity has persisted because
most historical records have been too short to accurately
detect nonstationarity, and because of lack of mathe-
matical frameworks for analyzing and modeling the dy-
namics of nonstationary processes. However, as record
lengths have increased, trends, oscillatory behavior, and
sudden shifts have been observed in sample records.

The main objective of this paper is to model hydro-
climatic processes that shift abruptly from one station-
ary state into another. It appears that the first concept
behind modeling sudden shiftsin hydrologic time series
was advanced by Hurst (1957). Subsequently Klemes
(1974) and Potter (1976) further argued about the use-
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fulness of algorithms to model shifting behavior. Boes
and Salas (1978) developed some special cases of shift-
ing mean models and Salas and Boes (1980) further
discussed their conceptual justification and their appli-
cability to hydrology. In this paper, we expand on the
earlier concepts and models and develop more versatile
models that can be useful for simulating the dynamics
of hydroclimatic processes exhibiting abrupt shifts. The
methods suggested here are intended for simulation and
generation of long sample records, rather than fore-
casting.

Shifts in hydrologic processes may be related to cli-
mate changes (Matalas 1997). Different indices, such as
oscillation indices that measure pressure or temperature
differences between two locations, or solar indices that
measure sunspot activity, are sometimes used to reflect
climatic fluctuations. These indices often appear to
change quasi-periodically with time, or shift from one
random stationary state to another. Taylor (1999) in-
vestigated ice cores from Greenland glaciers to get in-
formation about climate and climate changesin the past.
He concluded, that climate changes large enough to
cause significant impacts on society have occurred in
the past over a duration less than 10 yr. His ice core
measurements also indicated that 11 700 yr ago, when
the climate in the North Atlantic shifted from adry and
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cold ice age to a wetter and warmer climate, most of
the shift occurred during a period of only 40 yr. Kite
(1989) investigated changes in lake levels and stream-
flow sequences. He used time series analysis and spec-
tral analysisto detect linear trends, jumps, periodicities,
and other components in the hydrologic sequences. He
concluded that any such detected statistical components
were not the result of a climate change induced by the
so-called greenhouse effect but rather the result of other
natural processes. Likewise, Chiew and McMahon
(1993) concluded that there was no clear evidence to
suggest that trends or change in mean flow volumes of
Australian rivers were caused by climate changes. They
also commented that their results might be affected by
short sample records with high interannual variability.
Angel and Huff (1997) investigated changes in large
storm rainfall in the midwestern United States. Their
results showed that stations in the entire Midwest are
likely to have experienced their heaviest rainfall in the
recent years.

Others have tried to use oscillation indices such as
the Southern Oscillation (SO) often related to El Nifio
or LaNifadepending on its phase, or the Pacific decadal
oscillation (PDO) to explain observed variability in his-
torical sample series. For example, Waylen and Cav-
iedes (1986) used a three-component mixed Gumbel
distribution to fit the annual maximum floods on the
north Peruvian littoral. The annual maximum flood se-
ries were looked at as being produced by three different
mechanisms corresponding to different ocean—atmo-
sphere conditions: El Nifio, near average, and La Nifa.
Eltahir (1996) correlated the annual Nile River flows
with El Nifio-Southern Oscillation (ENSO), which is
based on sea surface temperature. His results suggested
that 25% of the variance of the annual Nile River flows
was associated with ENSO. Hamlet and Lettenmaier
(1999) forecasted Columbia River flows based on a giv-
en forecast of ENSO and the phase of PDO. Their results
suggested that including such atmosphere—ocean infor-
mation into streamflow forecasting models could result
in an increase in forecast lead time of about six months.

There is empirical evidence that interdecadal vari-
ability with abrupt changes in oceani c—atmospheric pro-
cesses and hydrologic processes have occurred in many
parts of the globe. An abrupt change, marked by a south-
ward shift and intensification of the Aleutian low, adrop
in the SST of the central North Pacific, and an increase
of SST along the west coast of North America, occurred
around 1976 (Trenberth 1990). Also Landsea et al.
(1999) reported abrupt changes of the annual rainfal in
the Sahelian region in Africa, and Thyer and Kuczera
(2000) showed the long-term variability of annual rain-
fall in some places in Australia where several periods
persistently below the long-term mean occurred. Like-
wise, abrupt changes have been reported in the annual
streamflows of the Nile River in Africaand the Colorado
River in the United States (Yevjevich 1972), the Niger
River in Africa (Chung and Salas 2000), the lake levels
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and outflows of the equatorial lakes in Africa (Salas et
al. 1981), and the annual net basin supplies for Lakes
Ontario and Eriein North America (Rassam et a. 1992).
In addition, the recent study by Yonetani and Gordon
(2001) documenting the occurrence of abrupt shifts in
oceanic—atmospheric factors, such as surface air tem-
perature and sealevel pressure, resulting from acoupled
atmosphere—ocean general circulation model is yet an-
other example of why certain hydrological processes,
such as rainfall and streamflow in some parts of the
world, also exhibit abrupt changes. These examplesalso
suggest the need for further analyzing and modeling
hydroclimatic processes exhibiting sudden shifting be-
havior. Modeling the dynamics of such types of pro-
cesses by using stochastic methods is the main subject
of this paper.

2. Some examples of hydroclimatic time series
exhibiting sudden shifts

There are many examples of time series of hydrocli-
matic processes that show evidence of sudden shiftsin
one or more of their statistical properties. For instance,
Mantua et al. (1997), Niebauer (1998), and Hamlet and
Lettenmaier (1999) analyzed the time series of annual
averages of the PDO index based on sea surface tem-
perature. Their results suggest that several shifts have
occurred since 1900. The latest such shift is suggested
to have occurred around 1977. Mantua et al. (1997)
defined the PDO to be in a cold phase during 1900-24
and 1947-76, and in a warm phase during the periods
1925-46 and 1977-96. Hamlet and Lettenmaier (1999)
argued that based on the ColumbiaRiver flowsthe phase
of the PDO might have shifted again in 1996 or 1997.
Figures 1a,b show an update of the annual averages of
the PDO index from Mantua et al. (1997). The data
were downloaded from ftp://ftp.atmos.washington.edu/
mantua/pnw-impacts/INDICES/PDO.latest. In Fig. la
the index time series is shown along with averages of
dominant phases as suggested by Mantua et al. (1997).
In Fig. 1b the index series is shown with alternative
choices of phases. The models proposed in this paper
are intended for time series that show similar sudden
shifting structure as in Fig. 1. Niebauer (1998) argued
that before the regime shift in 1977, El Nifio and La
Nifia conditions were about even, but after the regime
shift El Nifio conditions were about 3 times more prev-
alent, due to a change of location of the Aleutian low.

Gray et al. (2000) use sea surface temperature (SST)
in the North Atlantic as one of the predictors for fore-
casting hurricane activity in the Atlantic Ocean and the
Caribbean region. Figure 2 reproduced from Gray et al.
(2000) shows the annual average North Atlantic SST
anomalies over the period 1900-2000 for the region
50°—60°N, 10°-50°W. Several shifts in the mean of the
SST time series are evident in the figure. According to
Gray et al., periods of positive anomalies are related to
more active hurricane seasons than normal, while pe-
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FiG. 1. Time series of annual averages of the PDO index for the period 1900-99 based on sea

surface temperature, from Mantua et al. (1997).

(a) Solid lines show averages of dominant phases

of the PDO as suggested by Mantua et al. (1997). (b) Solid lines show alternative shifts.

riods of negative anomalies are related to less active
hurricane seasons than normal. The foregoing examples
show some empirical evidence of time series exhibiting
alternating periods of high and low values, where the
shift from high to low and vice versa seems to occur
abruptly. This type of abrupt shifting mechanismis rep-

resented by a shifting mean model dubbed SM-2, as
described in section 3 later.

While Figs. 1 and 2 are examples of atype of shifting
mean pattern where the abrupt change episodes alternate
from say up to down and then up again (i.e., always
with opposite signs), other shifting patterns may occur.
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Fic. 2. Annual average North Atlantic SST
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0°W for 1900—-2000 (reproduced from Gray et al. 2000).
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For example, there are empirical time series of SST in
other parts of the oceans and streamflow seriesin some
parts of the globe (e.g., refer to the annual streamflow
series of the Niger River in Fig. 10), where the shifting
pattern appears to be smoother, perhaps as a result of
shifting episodes in the same direction (i.e., after a
downward shift, it may shift downward again before
shifting upward and vice versa). This type of abrupt
shifting mechanism is represented by a shifting mean
model called SM-1, as described in section 3.

Furthermore, for either shifting pattern mechanism
one could also argue that the duration of the periods of
highs and lows (or periods where the process remains
at a given mean level) are random or at least they are
uncertain quantities. The following sections of the paper
refer to modeling the dynamics of the two shifting mean
mechanism based on stochastic methods.

3. Shifting mean processes

The objective here is to formulate a stochastic model
that is capable of representing the decadal variability of
certain hydroclimatic processes, particularly those ex-
hibiting abrupt or sudden shifting patterns. A number
of stochastic models have been proposed in literature
for modeling geophysical time seriesin general and hy-
droclimatic time seriesin particular (e.g., see Hipel and
McLeod 1994; Guttorp 1995). Some of the traditional
stochastic models [e.g., autoregressive moving average
(ARMA), fractional ARMA (FARMA), Fractional
Gaussian noise, and Broken line)] may be useful for
representing long-term variability and may produce ap-
parent changes (e.g., see Salas 1993; Hipel and McLeod
1994). In addition, threshold ARMA models (Tong
1990), shifting mean models (e.g., see Boes and Salas
1978; Salas and Boes 1980), and hidden Markov models
(e.g., see Zucchini and Guttorp 1991; Thyer and Ku-
czera 2000) are also capable of generating shifting pat-
terns. In fact, it may be shown that the shifting mean
model proposed by Boes and Salas (1978) can be re-
formulated as a hidden Markov model (Fortin et al.
2002). Furthermore, statistical testing procedures have
been developed for detecting and identifying the times
where abrupt changes occur (e.g., Perreault et al. 2000;
Rasmussen 2001). In this section, we will further de-
velop the shifting mean model originally proposed by
Boes and Salas (1978) for modeling the Hurst phenom-
enon. The underlying process is strictly stationary even
though the sudden shifts in the mean may give the im-
pression that the process is nonstationary.

A general definition of the shifting mean (SM) model
proposed in this paper is given by

X =Y +Z, (€N}

where X, is a sequence of random variables representing
the climatic or hydrologic process of interest, Y, is a
sequence of independent and identically distributed (iid)
variables with mean w, and variance ¢%, and Z, is a
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sequence with mean zero and variance 2. The Z;s rep-
resent noise in the mean of the process X,. This noise
is characterized by levelsin the sensethat Z, = - - - =
Zyy Zyyor = = Zyiny - - - Where N, is the span or
the length of the noise level i fori = 1, 2, ... In other
words N; can also be considered as the length of the
stationary state i of the process X,. This is where the
name shifting mean comes from, that is at each shift-
epoch, t 0 (1 + N;, 1 + N; + N,, ...), the mean of
the process X, can be thought of as being shifted from
one state to another one. In this paper it will be assumed
that N,, N,, . . . isadiscrete, stationary, delayed-renewal
sequence on the positive integers (e.g., see Ballerini and
Boes 1985; Boes 1988). This implies that N,, N, ...
are iid variables, say with a cumulative distribution
function (cdf) Fy(n), and N, is independent of (N,)._,
with a cdf

S - i)
FNl(n) = le
E [1 - Fu(i)l

n=12... (2

which existsfor E(N,) < oe. For clarification, adelayed-
renewal process will arise when the first event in Eq.
(1), X,, occurs in between shift-epochs of an ordinary
renewal process (that is, X, does not mark a beginning
of a new stationary state). A schematic representation
of a SM model is given in Fig. 3.

Two types of SM models will be considered based
on different treatment of the Zs. In the first SM model
referred to as SM-1, the sign of the noise levelsiis ran-
dom. Thus, Z, = M, for 1 + 321 N, =t = 31 N,
where M, is a real-valued zero mean random variable
(can take both positive and negative values). The SM-
1 model is structurally the same as the shifting mean
model introduced by Boes and Salas (1978). In the sec-
ond SM model, denoted by SM-2, Z, = Q,M, for 1 +
SN, =t =3, N, where N, = 0. Here Q, is a
sequence of variableswith values 1 and — 1 representing
the signs of the noise levels Z,; and M, is a sequence
of iid positivereal valued random variablesrepresenting
the magnitude of the noise level Z,. In the SM-2 model
two consecutive noise levels QM, and Q,. M, will
always have opposite signs (i.e., Q;,, = —Q,). An ex-
ample is the process shown in Fig. 1b.

a. The SM-1 model

The SM-1 model represented here is essentially the
same as the shifting level model introduced by Boes
and Salas (1978) except that in their case the M;s were
modeled by a nonzero mean process and the Y,s were
modeled by a zero mean process. The opposite is done
here. The detailed SM-1 model briefly introduced in Eq.
(1) is given by
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Fic. 3. A schematic representation of the shifting mean process in Eq. (1).
: E(XX) = ny and (4)
X =Y+ 2 Mg, g, ©)
i=1 Var(X) = o2 + o3, (5)

where S = N, + N, + .-+ + N, with S, = 0, and
| ap () is the indicator function equal to one if t O (a,
b) and zero otherwise. Furthermore, the noiselevelsM,,
M,, ... are zero mean random variables (in this paper
assumed to be iid normal, refer to section 3c), and N,,
N,, ... are positive geometric random variables with
parameter p, 0 < p < 1, (refer to section 3b). The
sequences N;, M, and Y, are assumed to be mutually
independent. The mean and the variance of the X, pro-
cess are

0.6 0.8 1

Ne)

FiGc. 4. The range of p,(1) and p4(2) of the SM-1 model for the

case when N,, N, ... " posgeom (p).

0 0.2 0.4

and the autocorrelation function (acf) is

ou(l — p)"

pult) = 55 m h=L2.. @

For the SM-1 model four parameters (wy, oy, oy, P)
need to be estimated. To estimate the parameters using
the method of moments, the estimated mean and vari-
ance of X, and estimates of p,(h) at up to two different
lags greater than zero are needed. The parameter esti-
mates in terms of [y, oy, and py(h) for h = 1 and 2
are

@

S ¥oi) "
o )
e} ©
= e and ©
52 = 62 — &2, (10)

The parameters’ estimates are feasible if p, (1) > py(2)
> p3(1) asillustrated in Fig. 4. Because of sample var-
iability of the sample correlogram, infeasible parameter
estimates may result. In such cases the sample corre-
logram can be fitted by p,(h) = ab" which has the same
form as the model correlogram in Eqg. (6) for 0 < b <
1and 0 < a < 1 (refer to section d).



494

b. The SM-2 model

Let (Q,);—, be asimple Markov chain with state space
(=1, 1) representing the sign of the shift as compared
to the long-term mean (wy) of the process X,. The tran-
sition probability matrix of the Markov chain is

0 1
P= 1 o (12)
where P(Q = -1|Q_, = -1) =0,P(Q =1|Q_,
= —1) = 1, etc. The unconditional probabilities are
P(Q = —1) = P(Q, = 1) = 1/2. Obviously E(Q) = 0,
Var(Q) = 1, and Skew (Q) = 0. Let (M))_, be a se-

guence of iid positive real variables with mean w,, and
variance o%,. Then the noise level sequence Z, can be
written as

M, ift=N,
<t=N, +
Zt=Eb2M2 ifN, <t=N, +N,
[
M, if S, <t<S
t
= 71QM|(sls](t) (12)
where asin section 33, S = N, + N, + - - - + N, with

S, = 0.

Let us assume that the sequences N;, Q;, M,, and Y,
are mutually independent. Then, unconditionally, the
process Z, is stationary in the mean and the variance
with first three raw moments E(Z,) = 0, E(Z?) = o3, +
ue, and E(Z3) = 0. It follows that the mean and the
variance of X, in Eqg. (1) are

E(X) = uy (13
Var(X) = Var(Y, + Z) = o2 + o + n3. (14)
Since the Y,s are iid, the lag-h autocovariance function

and

of X,h=1,2 , is given by
Cov(X,, Xin) = Cov(Y, + Z, Yoon + Ziin)
= Cov(Z, Z,) = E(ZZ.). (19)

Further assuming that (N,);—, is a statlonary, delayed-
renewal sequencewith N,, N, . . . % posgeom (p), then
the lag-h autocovariance function of X, becomes (refer
to detailed derivation and discussion in the appendix)

Cov(X;, Xi:p) = of(1 — p)" + uu(d — 2p)",
h=12.... (16)

From Egs. (14) and (16) it follows that the lag-h au-
tocorrelation function of X, is
ouw@d — P" + pH(d — 2p)"

h: ’
P of + oh +

an
The SM-2 model has five parameters, (wy, oy, Uy,
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ow, P). Recall that M;, M,, . .. are assumed to be pos-
itive iid variables representing the absolute value of the
departure of the shifting mean processin each stationary
state from its long-term mean. In most cases it should
be sufficient to model the M;s by a one parameter dis-
tribution. Such a distribution could be, for example, the
exponential distribution. The concave shape of the ex-
ponential distribution is useful for generation of noise
levels that are characterized by few extreme values and
a high concentration of values close to zero. A more
convex or bell-shaped curve (like the normal density
function above the 0.5 quantile) can also be used, where
the value of the probability density function in the lower
tail does not vary as much as the exponential density
function. For the SM-1 model, presented in section 3a,
the M.;s will be assumed to be zero mean normal iid
variables (not a required choice). Since one of the pur-
poses here is to compare the SM-2 model with the SM-
1 model, then we will assume that for the SM-2 model
the values of the M;s are the absolute values of zero
mean normal iid variables. More precisely, if W ~ N(u
= 0, 02 = B?), then M = |W| and the probability
density function of M is

fu(m) = \/%Bl eXp( 25 )l[w)(m) (18)

with mean E(M) = V2/7B and variance Var(M) = (1
— 2/7) B2, respectively. Thus, the number of parameters
of the SM-2 model reduces from five to four and the
acf in Eq. (17) simplifies to

_ B _ _ayn _ o)h
px(h) = e BZ)[(W 2)(1—-p"+ 21— 2p"],
h=12.... (19

The following estimation procedure can be used to
estimate the parameters (wy, oy, B, p) in terms of [y,
oy, and py(h) for h = 1 and 2. The quadratic equation

PZpx(D)(7 + 6) — P[2px(1) — px(Q(7 + 2)
+ [px(1) — px(]7m =0

is solved for p, and then the estimates of B, u,, and
0% are obtained from

(20)

A mpx(1)

P = o o + 2 (21)
By = [y, (22)
o3 = 6% — B2 (23)

respectively. In some cases Eqg. (20) gives two feasible
estimates of p, but usually onIy one of them will yield
both 3 > 0 and &2 > 0 in Egs. (21) and (23). The
parameter space for px(l) in terms of p,(2) can be con-
structed from the following relation
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_p(m+6)—2p(m+ 2+ 7
Px(2) = —p(m+ 2) + 7

px(1), (24)
where [0 < p (1) <1 — p(1 + 2/m) for0 < p < o/
2+ m],and [1 — p(1 + 2/7) < py(1) < O for 7/(2
+ 1) < p < 1]. The range of p,(1) and py(2) is plotted
in Fig. 5. Due to sample variability or other factors it
is possible that the sample acf falls outside of the pa-
rameter space in Fig. 5. In such cases the sample acf
can be smoothed or fitted as is done in the examplesin
section 4.

c. Choice of distributions to model the Y,s and the
M;s

The procedures for parameter (or moment) estimation
of the SM-1 and SM-2 models presented in previous
sections are independent of the choice of distributions
to model the Y,s and the M;s of the referred models. In
general it has been assumed that the Y,s follow a dis-
tribution with two unknown parameters and that the M;s
follow a distribution with one unknown parameter. The
fourth parameter is the parameter p of the geometric
distribution. We will assume that the X, process has zero
skewness (yyx = 0) and that Y,, Y,, ... "¢ N(uy, 02)
for both the SM-1 and SM-2 models. Furthermore, for
the SM-1 model it is assumed that the noise levels M,,
M., ... N(O, 02,). The parameters of the SM-1 model
are estimated using Egs. (7)—(10) and the parameters of
the simplified SM-2 model are estimated using Egs.
(20)—(23).

On the other hand, if the X, process has nonzero skew-
ness and one would like to preserve it, then skewed
distributions can be used to model the Y, and/or the M;
process of the SM-1 model, and the Y, process of the
SM-2 model. Procedures on how to incorporate skewed
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distributions in the modeling process will be discussed
elsewhere.

d. Properties of the autocorrelation functions of the
SM-1 and SM-2 models

As stated in Boes and Salas (1978) the acf of the SM-
1 model in Eq. (6) has the same form as the acf of an
ARMA(1, 1) process, that is, py(h) = ¢"py(1) for h
=1, 2, .... For the SM-1 model the acf is always
positive and falls exponentially towards zero. The acf
of the SM-2 model in Eq. (19) behaves similarly for p
< @l(7 + 2) but can take negative values if h is odd
and p is relatively large. In general py(h) < 0 in Eq.
(19) if and only if p > [2¥" + (7 — 2)¥M]/[(2)(2¥") +
(7 — 2)¥"] and h is odd. Futhermore, if p > 2/3 then
px(h) < O for al odd values of h. For illustration and
comparison, the autocorrelation functions of Egs. (6)
and (19) are plotted in Fig. 6 for p O (0.02, 0.2, 0.9);
for the SM-1 process 0% = 0% in Eq. (6), and for the
SM-2 process 0% = B2 in Eqg. (19). Thus for the par-
ticular case shown in the figure, the random variables
M;s of the SM-2 process are equivalent in distribution
to the absolute random variables M;s of the SM-1 pro-
cess.

Obviously the choice of using the geometric distri-
bution to model the length of the random time spans
(N;s) may not be appropriate in all cases. For example
if a given time series shows signs of periodic behavior,
then that periodic behavior should be reflected in the
sample correlogram. The use of the geometric distri-
bution will result in a fitted model with an acf that has
no signs of periodicity. In such a situation a different
distribution that could reproduce such periodic char-
acteristics would be more suitable for modeling the
lengths of the random time spans. Such a distribution
could be, for example, the binomial, the Poisson, the
discrete triangular, or the discrete uniform distribution.
On the other hand, using a different distribution than
the geometric would complicate the parameter estima-
tion if al the processes are assumed to be coupled to-
gether as is done here. For simplification and for the
purpose of this study we will stick with the geometric
distribution, but we do intend to study the effects of
choosing different discrete distributions for modeling
the lengths of the random time spans, and the possibility
of uncoupling the processes that make up the SM models
to simplify parameter estimation. The results of such a
study will be presented elsewhere.

4. Examples

In sections 1 and 2 we provided some exampleswhere
sudden changes or shifts in some oceanic—atmospheric
processes and some hydrologic processes have been ob-
served. In section 3 we devel oped amathematical frame-
work that can replicate such shifting behavior particu-
larly when apparent abrupt shifts in the mean occur.
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Such stochastic models do not seek to explain the un-
derlying physical mechanism of the observed sudden
shifts. Instead, the observed dynamics are stochastically
analyzed and modeled by a rather simple mathematical
construct, in such a way that the model is capable of
generating or simulating equally likely traces or sce-
narios with features, such as the sudden shifts, that are
stetistically similar or comparable to those shown by
the observed records. Such simulated traces of the hy-
droclimatic process under consideration (e.g., annual
rainfall over an area) may be useful for assessing the
availability of resources in a future horizon and iden-
tifying the vulnerability space of specified resources. In
this section, we illustrate the use of the proposed SM
models for modeling and generating synthetic traces of
some hydroclimatic series. In the first example we mod-
el the PDO time series to illustrate that both SM-1 and
SM-2 models are capable of generating synthetic traces
similar to that of the historical record. In the second
example, we examine more thoroughly the application
of both models to the annual streamflow series of the
Niger River. In particular, we compare the performance
of the models against the traditional ARMA model
based on a number of drought-and storage-related sta-
tistics.

The parameters’ estimates of the SM-1 and the SM-
2 model are not always feasible. The sample variability
of the correlogram can result in estimated parameters
that are outside the parameter space. To reduce effects
of sample variability and periodic behavior on the pa-
rameter estimates, the sample correlograms will in most
cases be fitted by an exponentially decaying function of
the form p,(h) = ab", h = 1, ..., which represents a
straight line in a log—og space and has the exact func-
tional form of the SM-1 model autocorrelation function
[refer to Eq. ()] for 0<b < l1and 0 < a < 1. Clearly
the model and the sample autocorrelation coefficients

nctions of SM-1 in Eq. (6) and of SM-2 in Eq.

B2in Eq. (19), and p O (0.02, 0.2, 0.9).

for lag h = 0 are equal to one exactly. However, fitting
of the autocorrelation function py(h) by the referred
exponential equation should not use p,(0) asaconstraint
to avoid serious distortions of the fitted correlogram. A
correlogram such fitted may not completely capture the
sample correlogram, but on the other hand the corre-
logram of the fitted SM model will closely resemblethe
fitted sample correlogram.

a. The PDO data

The acf of the annual PDO index (see Fig. 1) up to
lag 15 is shown in Fig. 7 along with approximate 95%
confidence bounds (+1.96/\/n) for aniid sequence. The
sample correlogram for lags 1-13 has been fitted by
px(h) = ab" using the method of |east squares. Thefitted
correlogram has a somewhat different shape than the
sample correlogram, where the sample correlogram
seemsto indicate adamped quasi-periodic behavior with
a period of about 5to 6 yr. The SM-1 and SM-2 models
are fitted assuming that the Y,s of the SM-1 and SM-2
models are normally distributed and that the M;s in the
SM-1 process are hormally distributed (refer to section
3c). The estimated parameters for both models in terms
of iy, 0y, and the lag 1 and 2 autocorrelation coeffi-
cients from the fitted correlogram are: for the SM-1
model, (p = 0.2703, ¢ = 0.5371, i, = 0.04769, 72
= 0.07000); and for the SM-2 model, (p = 0.1709,
= 0.7376, p, = 0.04769, 6% = 0.06300).

In order to verify if the shifting behavior of the PDO
datain Fig. 1 is captured by the models, PDO samples
of the same length as the historical record length were
simulated. The generated sequences are plotted in Fig.
8a based on the SM-1 model, and in Fig. 8b based on
the SM-2 model. From the figure it can be concluded
that the generated sequences do show similar shifting
behavior as does the sample datain Fig. 1. Furthermore,
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Fic. 7. Sample autocorrelations up to lag-15 of the Pacific decadal oscillation in Fig. 1. An
exponential decay function is fitted through the ACF at lags 1-13.
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Fic. 9. Correlograms of generated sequences using the assumed SM-1 and SM-2 models fitted
to the PDO data in Fig. 1. For each model a correlogram is estimated based on one generated
sample of size 1000 n, and based on averaging the acf’s of 1000 generated samples of the same

size as the historical record (n).

1000 realizations of the PDO index of the same length
as the historical record (n) were generated and the av-
erage mean, variance, and skewness were computed
based on these 1000 realizations. The SM-1 model gave
(fuy, 02, ¥y) = (0.0555, 0.5875, —0.0022); and the SM-
2 model gave (y, 6%, yx) = (0.0440, 0.5726, 0.0098).
For comparison, the respective statistics of the historical
sample are (0.0477, 0.6071, 0.0793). Thus, in general
it can be concluded that the SM-1 and SM-2 models
preserve the mean and the variance quite well. Note that
since the sample skewness is near zero no attempt was
made to preserve it, that is, the skewnesses of the fitted
SM-1 and SM-2 models are zero.

Correlograms based on the fitted SM-1 and SM-2
models are plotted in Fig. 9, where for both models a
correlogram is estimated based on one generated sample
of size 1000 n and based on the average acfs of 1000
generated sampl es of the same size asthe historical PDO

5
o
o

record (n). The estimated correlograms based on one
sample of size 1000 n can be considered the same as
the actual model correlograms. As often is the case,
when average correlograms are estimated based on a
number of generated samples of small sizes, the average
correlograms (uncorrected for bias) based on 1000 gen-
erated sequences of the same size as the historical PDO
record underestimate the true model correlograms for
both the SM-1 and the SM-2 models.

b. Mean annual flows of the Niger River at Koulikoro

In this example we model the mean annual flows
(1907-99) of the Niger River at Koulikoro (Mali, Af-
rica); refer to Fig. 10. It is clear that the series of annual
flows shows a pattern of persistent flows above the mean
and persistent flows below the mean with time spans
lasting for several years and perhaps decades. This shift-
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Fic. 10. (top) 1907-99 annual mean flows (m3 s71) in the Niger River at Koulikoro. (bottom)

Plot shows the correlogram with a fitted exponential decay function at lags 1-8.
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ing pattern of the Niger River likely arises because of
the similar decadal shifting pattern observed in the an-
nual rainfall in the Sahelian region of northwest Africa,
which covers part of the drainage area of the Niger.
Although the shifting pattern of the Niger River flows
appears to be not as abrupt or sudden as in the case of
the PDO series, we will use both SM models and (for
comparison) the ARMA(1, 1) model to test their ap-
plicability to the Niger. The sample statistics of the 93-
yr-long historical sample are i, = 1374 mé s°%, o =
398.0 m®* s7%, and y, = 0.175. Figure 10 aso shows
the sample acf up to lag 15. The fitted acf for lags 1
and 2 gave 0.709 and 0.622.

The estimated parameters for the SM-1 and SM-2
models in terms of i, oy, and the lag 1 and 2 acf of
the fitted correlogram are: for the SM-1 model, (p =
0.1223, o, = 357.8 m*s%, o, = 1,374 m* s%, o =
174.4 m? s**); and for the SM-2 model, (p = 0.0757,
B=3581ms? n,=1374m st o, = 1737 m?
S 1). The estimated skewness of the historical sample
isnot significantly different from zero soit isreasonable
to assume that the Y,s of both the SM-1 and the SM-2
models are normally distributed, and that the M;s of the
SM-1 model are also normally distributed. Based on the
fitted models, 1000 realizations of the Niger River flows
were generated. The mean and the variance were rela-
tively well preserved: (fuy, oy, Vx) = (1,379 m® s°4,
371.7 m® s, —0.0298) for the SM-1 model; and (fy,
Oy, ¥x) = (1,378 m® s, 369.5 m? s1, —0.0063) for
the SM-2 model.

In addition, the estimated correlogramsfor both mod-
els preserve the sample correlogram quite well (not
shown). A more exhaustive comparison of the perfor-
mance of the SM-1 and SM-2 models and that of the
ARMA(1, 1) model fitted with moments estimates of
the parameters were carried out. For this purpose 20 000
sequences of the same length as the historical record
were generated based on each of the three models. Then,
for each generated sample, severa statistics including
the number of upcrossings, the storage capacity, the
longest negative and positive run lengths, and the largest
negative and positive run sums were determined for
assumed demand levels d, equal to a fraction « (75%,
85%, 100%, and 115%) of the historical sample mean.
Box-plots comparing the generated and historical sta-
tistics for the 85% and 100% demand levels are shown
in Figs. 11 and 12, respectively.

First, comparing the performances of the SM-1 and
SM-2 models, the results show that the means of the
various referred statistics are about the same for both
models. However, there are some differences in the un-
certainty of some of the statistics (shown by the spread
of the box-plots). For example, the uncertainty of the
storage capacity and the negative run statistics for d <
iy (a < 1) appear to be somewhat larger for the SM-2
model, while for d > n,(a > 1) they are about the
same. Regarding the uncertainty of the number of up-
crossings, except for d = Gy (a = 1), the results are
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about the same for both models. In addition, the un-
certainty for the positive run statistics for the SM-2
model appears to be somewhat larger for d = .

Comparing the performances of the ARMA(L, 1),
SM-1, and SM-2 models, the results show that the means
of the various referred statistics can be somewhat dif-
ferent (either bigger or smaller depending on the given
statistic) for the ARMA and the SM models. For ex-
ample, the difference could be of the order of 20% be-
tween the means of the number of upcrossings as shown
in Fig. 11. Also, some differences in the uncertainties
of most of thereferred statisticsarefound for the ARMA
and SM models. For most statistics the uncertainties
found for the ARMA(1, 1) model were about the same
or bigger than for the SM models. For example, Fig.
11 shows that the uncertainty of the largest positive run
sum for the ARMA(1, 1) model is bigger than those for
the SM models. Likewise, Fig. 12 shows that the un-
certainty of the storage capacity for the ARMA(L, 1)
model is bigger than for the SM models. However, for
the negative run length and negative run sum statistics
and « < 1 (e.g., « = 0.75 not shown), the uncertainty
obtained based on the SM-2 model can be bigger than
that for the ARMA(1, 1) model.

It is worth mentioning that the performance between
the ARMA(1, 1) and the SM-1 models were also com-
pared for the same Niger River (although with models
based on much shorter data record) in the study con-
ducted by Salas and Boes (1980). The comparison was
made in terms of the storage capacity (maximum ac-
cumulated adjusted deficit), longest negative run length,
and largest negative run sum. The results showed that
the mean of the referred statistics for both models were
about the same but the uncertainty for the referred sta-
tistics (measured by the estimated variances) were big-
ger for the SM-1 model than for the ARMA(Z, 1) model.
The difference in the simulated experiments by Salas
and Boes (1980) with those described in this paper, is
that they considered the threshold levels equal to the
sample mean where each mean was cal cul ated from each
generated sample (instead, in the experiment conducted
herein the threshold level was assumed to be a constant
value for all generated samples).

Furthermore, an additional comparison between the
models involving the return period of drought lengths
was made. For a given demand level d, a drought du-
ration of length L is represented by L consecutive years
with flows less than the demand level. Simulationswere
used to estimate the first occurrence time of drought
durations of lengths 5 to 25 yr, based on the fitted
ARMA(Z, 1), SM-1, and SM-2 models. The demand
level was assumed to be d = 0.8511,. The average first
occurrence times of 2000 occurrences (return period) of
each drought length are shown in Fig. 13. The drought
frequency curves based on the SM-1 and ARMA(Z, 1)
models are quite close to each other. On the other hand,
there is a significant difference between the return pe-
riods (or drought quantiles) obtained for the SM-2 mod-
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Fic. 11. The number of upcrossings, storage capacity, longest negative run, longest negative
run sum, longest positive run, and longest positive run sum for demand level d = 0.85a, from
20 000 generated sequences of length n using the fitted ARMA(Z, 1), SM-1, and SM-2 models.

el, especialy for extreme drought quantiles. In addition,
note that the longest drought in the 93-yr historical re-
cord is 14 yr (the period 1980—93). Based on the fitted
SM-1 and SM-2 models a 14-yr drought has a return
period of 281 and 230 yr respectively. Also for com-
parison, the return periods obtained for the SM-1 and
SM-2 models for a drought lasting 20 yr are about 730
and 530 yr, respectively. And the 1000-yr drought is of
the order of 22 and 26 yr based on the SM-1 and SM-
2 models, respectively.

5. Interpretation of long-term hydroclimatic
variability and abrupt shifts

The subject of rapid transitions in the earth’s climate
system has been discussed widely in recent literture.

Such changes occur across adiversity of space and time-
scales. These include the sudden conversion in the mid-
Holocene of grasslands in northern Africa into the Sa-
hara desert we see today (Claussen and Gayler 1997;
Brovkin et al. 1998; Claussen et al. 1999; de Noblet-
Ducoudre et al. 2000; Doherty et al. 2000). On shorter
timescales, the rapid change between El Nifio and La
Nifia, and other atmospheric circulation patterns such
asthe North Atlantic Oscillation and the Pacific Decadal
Oscillation have been shown to exert a major influence
on seasonal, yearly, and decadal weather conditions
(Hurrell 1995; Beniston 1997; Castro et al. 2001). At
longer time periods, the changesin time of thetransition
between glacial and interglacial periods (Raymo 1997;
Petit et a. 1999), the near absence of a response at the
strongest timescales of orbital forcing, and the presence
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Fic. 12. The number of upcrossings, storage capacity, longest negative run, longest negative
run sum, longest positive run, and longest positive run sum for demand level d = a, from
20 000 generated sequences of length n using the fitted ARMA(1, 1), SM-1, and SM-2 models.

of significant variance at frequenciesthat are not present
in the orbital forcing are evidence of nonlinearity in the
climate system response to orbital forcing (e.g., see No-
beset al. 1991; Ghil 1994; Rial 1999; Rial and Anaclerio
2000). Furthermore, the recent results documented by
Yonetani and Gordon (2001) based on a 200-yr time
series of a number of climate variables (e.g., sea level
pressure and surface air temperature) resulting from a
coupled ocean—atmosphere general circulation model, is
a further evidence that not only empirical observations
but outputs from a physically based climate model ex-
hibit abrupt changes on decadal timescales.

The changes in statistical behavior shown in the pre-
vious sections and referred to in the previous paragraph
are examples of what is typically associated with non-
linear systems. Figure 14 reproduced from Kabat (2002)
illustrates schematic examples of nonlinear behavior,

which can be related to the examples presented in this
paper. Figure 15 illustrates a tolerance band with respect
to intensity of a hazard and exposure. In Fig. 14a, for
instance, there is a shift in the long-term mean while
the (short term) variability remains about the same. Fig-
ure 1 provides an example of this behavior. In Fig. 14c
the long-term mean changes little over time, but the
band of tolerance decreases. Figure 14b is a schematic
of when the mean remains about the same but the var-
iability increases.

If the examples presented in sections 2—4 in this paper
represent nonlinear systems, their prediction into the
future is inherently difficult, if not impossible. An al-
ternate approach, reported in Kabat (2002), isto identify
the vulnerability space of specified resources. The tol-
erance region is determined as the parameter space be-
yond which a significant negative impact would occur.
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Fic. 13. Return periods of droughts of various lengths based on a
demand level d = 0.85u, for the Niger River at Koulikoro for the
fitted ARMA(L, 1), SM-1, and SM-2 models.

The limit of the band of tolerance represents a vulner-
ability threshold. An example of a negative threshold
is the occurrence of freezing conditions in the fall (that
is, the end of the growing season). In general, there are
multiple environmental influences that determine the
band of tolerance, and when a threshold occurs. Chang-
ing statistics, as evident in Fig. 14, can result in greater
or less probability for a threshold to occur. The sto-
chastic modeling of hydroclimatic processesthat exhibit
shifting patterns as discussed in this paper may be help-
ful in examining the vulnerability space as suggested
herein [or in Smith (1996) and Kabat (2002)].

6. Concluding remarks

Empirical evidence has shown that some hydrocli-
matic processes exhibit abrupt shifting patterns in ad-
dition to autocorrelation. Also, it has been documented
that outputs from a physically based climate model ex-
hibit abrupt changes on decadal timescales. Modeling
the dynamics of such type of processes by using sto-
chastic methods has been the main subject of the re-
search reported herein. Certain stochastic models can
replicate such abrupt shifting behavior particularly when
apparent abrupt shiftsin the mean occur. Such stochastic
models do not seek to explain the underlying physical
mechanism of the observed sudden shifts. However,
they can be capable of generating or simulating equally
likely traces or scenarios with features (e.g., the abrupt
shifts) that are statistically similar or comparable to
those shown by the observed records. Such simulated
traces of the hydroclimatic process under consideration
(e.g., annual rainfall over an area) may be useful for
assessing the availability of resourcesin afuture horizon
and identifying the vulnerability space of specified re-
SOUrces.

Two types of shifting mean (SM) models are proposed
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Fic. 14. A schematic illustration in which risk changes due to
variations in the physical system and the socioeconomic system. In
al the cases risk increases over time (after Smith 1996; reproduced
from Kabat 2002).

to analyze climatic and hydrologic processes under a
probabilistic framework. The proposed shifting mean
models are considered to be nonstationary in the mean,
in the sense that they are alowed to shift from one
stationary state to another around a long-term mean.
The process of interest is written as a sum of two in-
dependent random variables Y, and Z,, wherethe Y,sare
assumed to be iid variables and the Z,s are assumed to
represent departures of each stationary state from the
long-term mean of the process. That is, during each
stationary state the Z,s remain fixed at a value referred
to as a noise level. In the SM-1 model the noise levels
are allowed to fluctuate in random manner, while in the
SM-2 model two consecutive stationary states always
have noise levels of opposite signs. The positive geo-
metric distribution is used for modeling the length that
the process spends in each stationary state. As a result
the correlograms of the SM models under consideration
are restricted to certain shapes.

The applicability of the two SM models to simulate
hydroclimatic time series exhibiting abrupt shifts was
demonstrated. In the first example we modeled the PDO
time series using both SM-1 and SM-2 models. In the
second example, we examined more thoroughly the ap-
plication of the models to the annual streamflow series
of the Niger River. We also compared the performance
of the models against the traditional ARMA model
based on a number of drought- and storage-related sta-
tistics. In general, the SM models are capable of pre-

& Exposure to Ha;ard
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Damage threshold

Hydroclimatic variable

Intensity of a hazard
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Time

Fic. 15. The intensity and exposure of an environmental hazard
expressed as a function of the variability of a hydroclimatic variable
within the limits of tolerance (after Smith 1996; reproduced from
Kabat 2002).
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serving the mean, variance, and the autocorrelation of
the historical sample series, as well as generating se-
guences with abrupt changes similar to those observed
in the historical records. No attempt was made to pre-
serve the sample skewness. A detailed comparison of
the performance of the SM-1, SM-2, and ARMA(1, 1)
models was made based on several statistics including
the number of upcrossings, the storage capacity, the
longest negative and positive run lengths, and the largest
negative and positive run sums for assumed demand
levels, equal to 75%, 85%, 100%, and 115% of the
historical sample mean. In addition, the models were
compared based on the return period of drought lengths.
Comparing between the SM models, it appears that the
means of the various statistics are about the same for
both models while the corresponding uncertainties are
about the same or bigger for the SM-2 model depending
on the demand threshold level. Comparing between the
ARMA and SM models, it appears that the means of
the various referred statistics can be different for the
two classes of models. Likewise, some differences in
the uncertainties of most of the referred statistics are
found for the ARMA and SM models. Last, the drought
frequency curves based on the SM-1 and ARMA(Z, 1)
models are quite close to each other while there is a
significant difference between the return periods (or
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drought quantiles) obtained for the SM-2 model, es-
pecially for extreme drought quantiles.

The referred SM models do not model trends or time
series that show changes in the sample variability. How-
ever, modifying the referred SM models could include
these additional features. For example, we are currently
studying the effect of inducing persistence into the Y,
process. In general, the proposed SM models appear to
have a wide range of applicability for modeling of any
type of climatic, hydrologic, and geophysical process.
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APPENDIX

Derivation of the Autocovariance Function
in Eq. (17)

Substituting Z, from Eq. (12) into (15) gives

COV(XU Xt+h)
= 2 QMils 131(02 QMjlg gt + )| = 21 21 E[QMils ,s;(OQMil s, 5(t + h)]

Z HE[QM? s 1Ol st + D[S, S, .

i+h

S} + 22 E(EIQ, Mils .51 (OQM,

il s+ MIS, S, .}

i#]

—ZE(MZ)P(S <t, s>t+h)+2 > E2ME[EQQIQ)IP(S,<t=S,S,<t+h=£S)

i=1 j=i+1

and finally after simplification

Cov(X, Xo) = (0 + 12) S P(Ss

i+h

+MM2 > (-)WPES ., <t=S,§,<t+h=9).

i=1 j=i+1

Note that in general the autocovariance function of
X, in Eqg. (Al) is not stationary, that is, in general
Cov(X,, Xiin) # Cov(X;, X;,,) fori #jandi,j, hO
(1,2

Boes and Salas (1978) assumed that (N,)_, is pos-
itive geometric distributed [refer to Egs. (A2) and
(A3)]. The geometric distribution has a similar shape
to the exponential, that is, its mode is at its lowest
value and the probability mass function (pmf) falls
monotonically towards O at infinity. Thus the geo-

<t,S=t+h)

(A1)

metric distribution is useful to model the length of
the stationary time spans of processes that shift fairly
rapidly from one stationary state to another. More
interestingly, if (N);_, is assumed to be astatlonary,
delayed-renewal sequence with N,, N, ... ~ pos-
geom (p) then it may be shown using Egs. (2) and
(A3) that also N, is posgeom (p). Random variable
N has the positive geometric distribution with param-
eter p, denoted as N ~ posgeom (p), if the pmf and
the cdf of N are given by
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fu(m) = PN=n) = p(l — p)" . ;) and (A2)

Fu® = 2 11— @ = )N ®),

n=1

(A3)

respectively, where 0 < p < 1. The mean and the var-
iance of N are

p

E(N) = %3 and Var(N) = % (A4)

The sum of positive geometric random variables is neg-
ative binomial distributed. Thusif N,, N,, . . . ¢ posgeom
(p), then the pmf of § = N, + --- + N; is given by

P§=9 = (JS _ ]1->pj(1 = P59
i=12.... (A5)

Using Egs. (A2) and (A5) into Eg. (Al), the autoco-
variance function of X, can be simplified to thefollowing
form:

COV(XU Xt+h)

(0% + )@ — P+ ui

h h
X ;) (—1)j<j)pj(1 -pri-@2-p"
oz(1—p"+ il —2p", h=12...,

(A6)

which says that under the assumption that N,, N, . ..
L posgeom (p), the resulting lag-h autocovariancefunc-
tion of X, is stationary, that is independent of t.
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