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ABSTRACT  
 

 
A new approach to parameterize physical processes with weather and climate models is 

presented, with a specific example for diabatic heating processes. Traditionally diabatic 

processes within these models are parameterized separately in terms of vertical (1-D) 

representations of short- and longwave radiative flux divergences, stable and convective clouds 

and precipitation, and turbulent flux divergence. However, we propose a methodology where 

satellite remote-sensed data are utilized to create a unified parameterization that incorporates the 

net effect of each of the physical processes.  This is not only computationally efficient but also 

implicitly includes real world three-dimensional processes. Model results are proposed along 

with observational analysis and simulation experiments that can provide recommendations to the 

remote sensing community on the types of data most useful in creating a unified 

parameterization of diabatic heating. 

 

 

 

 

 
 
 
 
 
 
 
 
 

 2



 
 
 

Introduction 
 

The traditional procedure to parameterize physics in weather and climate models at 

spatial scales that are too small to be explicitly resolved in the models, is to separately represent 

turbulence fluxes, shortwave radiative fluxes, longwave radiative fluxes, and convective and 

stratiform cloud-precipitation processes. The traditional parameterizations are typically 1-D 

column models that interact with the dynamical core of a given atmospheric model.  These 

subgrid parameterizations are then used to diagnose the effect of these physical processes within 

the model. However, such a separation is not realistic as the parameterized processes are, in fact, 

three-dimensional and may interact with each other.  

With respect to convective cloud parameterizations, a cumulus parameterization 

workshop (1) concluded that there are three major approaches to cumulus parameterization: 

traditional, statistical, and super-parameterization (or multi-scale modeling Framework, MMF).  

Most traditional column-based convective parameterization schemes in regional and global 

atmospheric models presently use a mass-flux (e.g., 2,3) or quasi-equilibrium approach (4). The 

statistical approach is a statistical parameterization based on the analysis of cloud resolving 

model output (1). 

The super-parameterization approach uses data from many Cloud Resolving Model 

(CRM) simulations to diagnose the cloud system response to large-scale parameters.  In MMF a 

full 2D CRM is embedded within each grid cell of a large-scale model (5). However, the MMF is 

presently very computationally expensive, and is, as yet, impractical for operational weather 

forecasting, ensemble simulations, or climate simulations.  
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There was also a consensus from the cumulus parameterization workshop (1) that a 

consistent, comprehensive cloud database (associated with clouds and cloud systems that 

developed in different geographic locations) should be generated from the ensemble of CRMs 

for use in the development and improvement of cumulus parameterization schemes.  This cloud 

data is to be generated in close collaboration with parameterization developers.  However, new 

and innovative ideas for the optimal way to use the CRM data sets are needed.  

We propose a different approach in which satellite (and other available) observations are 

used to construct unified parameterizations, which includes the combined effect of each of the 

atmospheric physics processes, Since the observations are sampling reality, this assures that 

three-dimensional interactions are implicitly included. 

To illustrate the methodology, we focus first on subgrid-scale diabatic effects. As given 

in Pielke (6), the conservation equation for potential temperature can be written as, 

∂ θ /∂t = -u ∂ θ /∂x – v ∂ θ /∂y – w ∂ θ /∂z + Sθ    (1) 
 
 The source/sink term Sθ  includes all of the diabatic physics, which, in a model, is 

decomposed into separate parameterizations and a resolvable term for phase changes of water. 

 The term θ is the potential temperature and is defined as  
 

θ = TV (1000mb/p)R
d

/C
p      (2) 

 
such that θ can be calculated from the virtual temperature, Tv, and pressure, p (mb).  Rd and Cp 

are the gas constant for dry air and the specific heat of air at constant pressure.  TV  is obtained 

from  

TV = T (1 + 0.61q) 
 
where q is the specific humidity of the air. 
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Methodology  
 
 Our methodology is that instead of using separate physics to compute the terms that 

comprise Sθ, observed data are used to construct this term in the format of a transfer function 

(e.g., a “look-up-table”), as proposed by Matsui et al. (7) and Pielke et al. (8) for the individual 

parameterizations that comprise Sθ. 

 The remote sensing community uses such an approach routinely in its algorithms to 

convert satellite radiances into variables, for example (e.g., see ref. 9). There is also a direct 

analogy to the approach several investigators have made in land surface modeling. Like the 

convective parameterization problem, the land surface parameterizations are fraught with highly 

complex interactions between vegetation, soil and moisture. Further, like in convective schemes 

most desired parameters are not directly measurable such as stomatal resistance, soil diffusivity 

and grid averaged heat capacity. Given this complexity some modelers have resorted to simpler 

models constrained by satellite observations to recover fluxes as a residual. In particular, 

McNider et al. (10), Jones et al. (11), Alapaty et al. (12) and others have proposed and used 

morning satellite surface tendencies to infer the moisture availability and evening tendencies to 

infer heat capacity (13).  The triangle method of Gillies et al. (14) is another example where a 

look-up table approach is used to derive surface energy fluxes from satellite observed values of 

vegetation fraction and surface radiant temperature. 

 What we propose is to utilize this methodology to develop computationally fast 

parameterizations for use in models. We illustrate this method for the physics of diabatic heating, 

but it can be applied to any quantities that are parameterized within weather and climate models. 

 The procedure is as follows: 
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1. Satellite observations, at their sampling time, are used to obtain T (e.g., GOES), the 

horizontal winds (e.g., Windsat, GOES), and water vapor (GOES), liquid water (e.g., 

Cloudsat, TRMM) and ice (Cloudsat) for each of the footprints that are viewed by the 

satellite over a period of time. This data needs to be transferred to a gridpoint format.  

2. The individual terms in Eq. (1) are directly computed for the sampling time period of the 

observations: 

i) ∂ θ /∂t    

ii)  u ∂ θ /∂x – v ∂ θ /∂y    

while w ∂ θ /∂z is diagnosed using the spatial gradient of the horizontal wind field (w is 

diagnosed from the conservation of mass and/or using  quasi-geostrophic theory The 

horizontal wind field can be derived from the temperature field using thermal wind 

relation and clouds movement, when applicable). 

3. The value of Sθ is then computed as a residual; 

Sθ=  u ∂ θ /∂x + v ∂ θ /∂y + w ∂ θ /∂z + ∂ θ /∂t. 

4. The model resolved portion of Sθ can be subtracted out also; 

<Sθ> = Sθ – L w ∂qs/∂z 

where L∂qs/∂z is the latent heat of model-resolved phase change when q is equal to qs and 

w > 0  [qs is the saturation specific humidity]. This calculation can be generalized to 

include phase changes of liquid and ice also, and w is the grid volume averaged vertical 

velocity. The quantity <Sθ> is then the subgrid-scale diabatic contribution, provided the 

satellite observations are available 
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5. Using satellite measured values of temperature, the horizontal winds, and water vapor, 

cloud liquid water and ice, the individual terms in #3 and #4, and other needed 

information can be obtained and inserted into the transfer function, T,  

INPUT = ∑ (satellite input of u ∂ θ /∂x + v ∂ θ /∂y,   ∂ θ /∂t , u ∂ q /∂x + v ∂ q /∂y, ∂ q 

/∂t, time of year, latitude)  →  T →  <Sθ> 

The unified parameterization is T, which can be expressed as a look-up table, as a 

transfer function, or by use of artificial intelligence techniques, including neural 

networking or genetic algorithms. 

 Two necessary conditions for this approach to provide an accurate unified 

parameterization are 1) that the satellite observations are sufficiently accurate with the needed 

spatial and temporal resolution and 2) that the satellite observations encompass a broad and 

global range of meteorological conditions. One of the most promising future satellite sensors that 

suit the requirements of the present concept is GIFTS (The Geosynchronous Imaging Fourier 

Transform Spectrometer). This is a measurement concept which combines a number of advanced 

imaging technologies with the Fourier Transform Spectrometer (FTS). The GIFTS will improve 

the observation of all three basic atmospheric state variables (temperature, moisture, and wind 

velocity) allowing much higher spatial, vertical, and temporal resolutions than is now achievable 

with currently operational geostationary weather satellites. Figure 1 shows the simulated retrieval 

accuracies of GIFTS for temperature and humidity profiles and their comparison with current 

GOES retrievals (15). The displacement of the measured water vapor and cloud features from 

GIFTS measurements will be used as tracers of the transport of atmospheric water as well as 

other important constituents (e.g., CO2 and O3). A key advance over current geostationary wind 

measurement capabilities is that the water-vapor winds will be altitude-resolved throughout the 

 7



troposphere.  The GIFTS wind system uses the retrieved moisture fields on constant altitude 

surfaces to identify gradients for motion vector calculations. This novel approach eliminates the 

height assignment issue that is often the biggest source of error in the retrieval of atmospheric 

winds. Velden et al. (16) demonstrated that wind fields obtained by tracking the moisture 

gradients from an air-borne hyperspectral instrument matched the measurements of a Doppler 

Wind Lidar nicely with wind speed deviations limited to less than 3 m s-1. In cloudy areas where 

wind fields could not be obtained as accurately from the satellite measurements the wind data 

could be supplemented from the standard weather analyses. The proof of concept presented in 

the next section can provide further information to the remote sensing community that is needed 

to obtain this information. 

 

Proof of Concept 

 The proof of concept of this methodology is to use regional model simulations (e.g., 

using RAMS; 17), to construct T since each of the INPUT values can be obtained from the 

model fields and the value of <Sθ> can be computed by summing each of the diabatic terms that 

are calculated in the model using the traditional 1-D, separate parameterizations.  

 The goal is to recreate <Sθ> from the sum of the turbulent flux divergence, the shortwave 

radiative flux divergence, the longwave radiative flux divergence, the phase changes of water on 

the subgrid scale, and cumulus cloud flux  divergence of θ. If we refer to this value of  <Sθ> as  

<<Sθ>>, and the transfer function calculated version as <Sθ>, then the methodology is successful 

if the diabatic heating calculated by the traditional way using separate parameterizations, 

<<Sθ>>, produces essentially the same result as using the transfer function approach, <Sθ>; i.e., 

 
<<Sθ>> ≈ <Sθ>. 
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and the calculation of  <Sθ> is computationally much more rapid.  After we prove the concept, 

<Sθ> can then replace the separate, more computationally expensive individual calculations of  

the subgrid diabatic terms before.  The transfer function, T, can replace the traditional approach 

of parameterization .  

 To demonstrate skill of the method when remotely sensed data is used to construct T, the 

proof of concept experiments will also include computation of source/sink term from simulated 

satellite data, denoted by ∗
θS . The simulated satellite data are computed from the model fields 

such as to have  spatial and temporal resolution and error characteristics of the actual satellite 

data, including future sensors. Coarser spatial and temporal resolution of the simulated data 

relative to the model produce representativeness errors in ∗
θS . Amplitude errors assigned to the 

individual fields (i.e., temperature, humidity, wind) would reflect the data accuracy resulting 

from the measurement and retrieval errors. The quantity ∗
θS  is by definition stochastic because 

it contains information about the errors in the data. This property implies that an ensemble 

average of model simulations using  ∗
θS  from a range within the error margins should be 

compared with the control model simulation.  A small difference between the two model results 

would imply high skill of the method.  This difference represents a global measure of the impact 

of the data errors. In the proof of concept experiments, the simulated data errors could be varied 

to determine desired resolution and accuracy in the data to result a satisfactory estimate of <Sθ>.   

 
 The development of an efficient transfer function T relies on a high degree of spatial and 

temporal correlation among the meteorological fields.  More specifically this allows pattern 

recognition techniques to reduce the dimensionality of input space.  Empirical Orthogonal 
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Functions and Rotated Empirical Orthogonal functions have already proved successful in 

identifying physically meaningful patterns (18, 19, and many others) and can be used in this case 

as well.  Neural networks and genetic algorithms also could be successful not only because of 

their robustness, but also because they can help determine the relationship between variables, 

when the explicit form of the relationship is not easily determined (20, 21).   Fausett (20) also 

foresees as that computing resources will allow for faster computation and larger storage 

capabilities (both in memory, and physical disk space), such that neural networks become even 

more attractive in their ability to determine relationships for extremely large data sets.  Besides 

the above mentioned approaches, artificial intelligence techniques used for pattern recognition 

purposes by other communities could be employed to build the transfer function T. 

 Finally once the transfer function is completed it not only serves as a proof of concept of 

the unified lookup table approach proposed here, but also can be used as part of RAMS or any 

other model for climate studies and numerical weather prediction with considerable 

computational advantage.  

 
Application to Models Using Remotely Sensed Data and Virtual Cloud Library 

 
 The demonstration that a unified parameterization can be achieved using the model as the 

test bed, indicates that the procedure will work when remotely sensed data is used to construct T.  

The next step in the assessment is to collect available satellite data to determine if sufficient 

information is available in satellite measurements and they are accurate enough to derive <Sθ>. 

In addition, with new satellites planned (geostationary satellites in particular), the development 

of this approach to model parameterization could assist satellite developers in decisions with 

respect to what instrumentation to place on them.  
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 Although the ultimate goal is to use the observations for constructing unified LUTs, it 

requires more than several years to launch the next-generation of geostationary satellites. Thus, 

we propose to use a virtual cloud library (VCL) as an initial step. VCL is being constructed by 

the NASA’s MMF (22). Whereas VCL is a model-generated dataset, it has the comprehensive 

dataset required for constructing the unified LUT. Those massive datasets can be efficiently 

hardwired through the unified LUT or neural network approach as proposed by Matsui et al. (7) 

and Pielke et al. (8).  
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Figure 1: Simulated accuracies of temperature and humidity profiles by GIFTS and their 

comparison with the accuracy of GOES-8 retrievals and NWP forecasts (15).
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