Top Ten Overlooked Issues in Climate Change Science

Roger A. Pielke Sr.
Colorado State University
Department of Atmospheric Science
Fort Collins, Colorado
Policy Statement on Climate Variability and Change by the American Association of State Climatologists

1. Past climate is a useful guide to the future - Assessing past climate conditions provides a very effective analysis tool to assess societal and environmental vulnerability to future climate, regardless of the extent the future climate is altered by human activity. Our current and future vulnerability, however, will be different than in the past, even if climate were not to change, because society and the environment change as well. Decision makers need assessments of how climate vulnerability has changed.

2. Climate prediction is complex with many uncertainties. The AASC recognizes climate prediction is an extremely difficult undertaking. For time scales of a decade or more, understanding the empirical accuracy of such predictions - called “verification” - is simply impossible, since we have to wait a decade or longer to assess the accuracy of the forecasts.
Views of Climate Change Science
Climate change including regional impacts can be skillfully predicted by knowledge of the concentration of well-mixed greenhouse gases.

Surface temperatures are the most appropriate metric to assess “global warming.”

The global average temperature provides a useful assessment of climate.

The surface temperature data has been adequately homogenized in the regional scale using adjustments such as time of observations, instrument changes, and urbanizations.

Arctic sea-ice cover and Northern Hemisphere snow cover are continuously diminishing in areal coverage.
The atmospheric hydrological cycle is accelerating.

The earth’s atmosphere is warmer today than it was in 1979 when accurate global satellite coverage became available.

The GCM models have skillfully predicted the evolution of the earth’s atmospheric temperature since 1979.

We understand climate change and can introduce policies to prevent our “dangerous intervention in the climate system.”

The IPCC and U.S. National Assessment document a clear scientific understanding of the human disturbance of the climate system.
The Lack of Spatial Representativeness of Surface Temperature

R-274 http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Maximum-minimum temperature sensor (MMTS) installation near Lindon, Colorado.
MMTS installation near John Martin Reservoir, Colorado.
Map of study region, showing all surveyed COOP sites. The USHCN sites are indicated by stars.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Eads, CO. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Holly, CO. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics for the NWS COOP station near Rocky Ford, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively. (CRS-Cotton Region Shelter)
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Trinidad, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Cheyenne Wells, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Lamar, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Wray, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
Photographs of the temperature sensor exposure characteristics of the NWS COOP station at Las Animas, Colorado. Panel a) shows the temperature sensor, while panels b)-e) illustrate the exposures viewed from the temperature sensor looking N, E, S, and W, respectively.
The Lack of Added Regional Simulation Skill By Dynamic Downscaling

R-276 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Dynamical downscaling with a RCM never adds more value to predictability of the large-scale over and above that which exists in the larger global model or reanalysis when downscaled from the larger global model or reanalysis using one-dimensional boundary-layer theory to interpolate to higher spatial resolution terrain height, and land and water surface values. The utility of the RCM is to resolve the smaller-scale features which have a greater dependence on the surface boundary.
<table>
<thead>
<tr>
<th>Bottom Boundary Conditions</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain; LDAS<sup>a</sup>; Observed SSTs</td>
<td>Terrain; Climatological Vegetation; Observed SSTs</td>
<td>Terrain; Climatological Vegetation; Observed SSTs; Deep Soil Moisture</td>
<td>Terrain; Soils</td>
<td></td>
</tr>
<tr>
<td>Initial Conditions</td>
<td>ETA Analysis Field</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>Lateral Boundary Conditions</td>
<td>Global Forecast System Atmospheric Model<sup>b</sup></td>
<td>NCEP Reanalysis<sup>e</sup></td>
<td>Global Model Forced by Observed SSTs</td>
<td>IPCC<sup>d</sup>; US National Assessment<sup>e</sup></td>
</tr>
<tr>
<td>Regional</td>
<td>ETA<sup>f</sup> MM5<sup>g</sup> RAMS<sup>b</sup> ARPS<sup>i</sup></td>
<td>PIRCS<sup>j</sup></td>
<td>COLA<sup>k</sup>/ETA<sup>i</sup></td>
<td>RegCM<sup>m</sup></td>
</tr>
</tbody>
</table>

^a http://ldas.gsfc.nasa.gov/
^b http://www.emc.ncep.noaa.gov/gmb/moorthi/gam.html
^c Kalnay et al. (1996)
^d Houghton et al. (2001)
^e http://www.gerio.org/NationalAssessment/
^f Black (1994)
^g Grell et al. (1994)
^h Pielke et al. (1992)
ⁱ Xue et al. (2000, 2001)
^j Takle et al. (1999)
^k http://www-pcmdi.llnl.gov/modldoc/amip/14cola.html
^l Mesinger et al. (1997)
^m Giorgi (1993a, b)
<table>
<thead>
<tr>
<th>Constraints</th>
<th>Greater Constraints</th>
<th>Greater Predictive Skill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day-to-Day Weather Prediction</td>
<td>Type 1</td>
<td>Initial Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Irradiance</td>
</tr>
<tr>
<td>Seasonal Weather Simulation</td>
<td>Type 2</td>
<td>Lateral Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Bottom Land Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Well-Mixed Greenhouse Gases</td>
</tr>
<tr>
<td>Season Weather Prediction</td>
<td>Type 3</td>
<td>Topography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sea Surface Temperatures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Well-Mixed Greenhouse Gases</td>
</tr>
<tr>
<td>Multiyear Climate Prediction</td>
<td>Type 4</td>
<td>Topography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Well-Mixed Greenhouse Gases</td>
</tr>
</tbody>
</table>
GCM Models Have Not Yet Succeeded In Skillfully Predicting 1980-2000 Global Climate

R-271 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Figure 2a: CGCM1: GLOBAL TEMPERATURE ANOMALY

T ANOMALY

YEAR

SURFACE
500mb
Figure 26

CGCM2: GLOBAL TEMPERATURE ANOMALY

YEAR

T ANOMALY

SURFACE

500mb
Figure 2d

GFDL: GLOBAL TEMPERATURE ANOMALY

YEAR

T ANOMALY

SURFACE

500mb
Simulated January reference height temperature difference (current-natural) (C); regions of statistically significant differences are shaded (from Chase et al. 2000).
The Lack of Warming in the Arctic Troposphere

R-246 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Reanalysis monthly-averaged area enclosed by indicated isotherm during the period 1950-1998 north of 60°N. (a) -40°C isotherm, (b) -42°C isotherm, and -44°C isotherm.
The Global Spatial Redistribution of Energy by Human-Caused Landscape Change

R-258 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Examples of land-use change from (a) 1700, (b) 1900, (c) 1970, and (d) 1990. The human-disturbed landscape includes intensive cropland (red) and marginal cropland used for grazing (pink). Other landscape includes tropical evergreen forest and deciduous forest (dark green), savannah (light green), grassland and steppe (yellow), open shrubland (maroon), temperate deciduous forest (blue), temperate needleleaf evergreen forest (light yellow) and hot desert (orange). Note the expansion of cropland and grazed land between 1700 and 1900. (Reproduced with permission from Klein Goldewijk 2001.)
The ten-year average absolute-value change in surface latent turbulent heat flux in W m$^{-2}$ at the locations where land-use change occurred for (a) January, and (b) July. (Adapted from Chase et al. 2000.)
The ten-year average absolute-value change in surface sensible heat flux in W m$^{-2}$ at the locations where land-use change occurred for (c) January, and (d) July. (Adapted from Chase et al. 2000.)
The ten-year average absolute-value change in surface latent turbulent heat flux in W m$^{-2}$ worldwide as a result of the land-use changes for (a) January, and (b) July. (Adapted from Chase et al. 2000.)
The ten-year average absolute-value change in sensible turbulent heat flux in W m$^{-2}$ worldwide as a result of the land-use changes for (c) January, and (d) July. (Adapted from Chase et al. 2000.)
A Change In Any Single Term In The Surface Heat Budget Will Result In a Spatial Redistribution Of Energy

\[Q_N + Q_H + Q_{LE} + Q_G = 0, \]

where

\[Q_N = Q_S(1 - A) + Q_{LW}^\downarrow - Q_{LW}^\uparrow. \]
The Adoption of a More Appropriate Metric to Monitor “Global Warming (or Cooling)"

R-247 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Planetary energy imbalance (heat storage in the upper 3 km of the world ocean) observations expressed in units of watts m\(^{-2}\) (adapted from Levitus et al. 2001). (Figure prepared by Alan Robock, Rutgers University, 2001, personal communication.)
The heat budget for the earth system can be expressed as

$$\iiint R_N dA dt = \iiint Q dV dt + \iiint Q dV dt$$

+ other heat reservoirs,

where R_N is the global mean nonequilibrium radiative forcing, A_{Earth} is the area of the earth, Q is the heating rate, V_{atmos} is the volume of the atmosphere, and V_{ocean} is the volume of the ocean.
The Importance of the Biological Effect of Enhanced CO$_2$

R-229 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Figure 4. RAMS/GEMTM coupled model results – the seasonal domain-averaged (central Great Plains) for 210 days during the growing season, contributions to maximum daily temperature, minimum daily temperature, precipitation, and leaf area index (LAI) due to: $f_1 =$ natural vegetation, $f_2 = 2 \times CO_2$ radiation, and $f_3 = 2 \times CO_2$ biology (adapted from Eastman et al., 2001).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Current Vegetation $1 \times CO_2$</th>
<th>Natural Vegetation</th>
<th>$2 \times CO_2$ radiation</th>
<th>$2 \times CO_2$ biology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>σ</td>
<td>Mean</td>
<td>σ</td>
</tr>
<tr>
<td>TMAX ($^\circ$C)</td>
<td>23.13</td>
<td>4.52</td>
<td>–1.191</td>
<td>1.77</td>
</tr>
<tr>
<td>TMIN ($^\circ$C)</td>
<td>7.299</td>
<td>2.78</td>
<td>–0.017</td>
<td>0.531</td>
</tr>
<tr>
<td>PPT (mm)</td>
<td>0.889</td>
<td>0.34</td>
<td>–0.035</td>
<td>0.088</td>
</tr>
<tr>
<td>LAI</td>
<td>2.663</td>
<td>3.402</td>
<td>0.198</td>
<td>0.783</td>
</tr>
</tbody>
</table>
Climate as an Initial Value Problem

R-225 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Figure 6. Schematic of different classes of prediction. The size of the box labeled ‘U’ represents the range of future climate, while the box labeled ‘A’ indicates the relative subset of possible future climate that are estimated using the different classes of prediction, (adapted from Pielke Sr., 2001).
Regional Land-Use Change Effects on Climate in the Winter

R-277 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
Fig. 1. Number of citrus trees per county and principle areas of winter fresh vegetable production. Figure adapted from Florida Agriculture Facts Directory 2002.
Fig. 2. Observations of minimum temperature from the National Weather Service Cooperative Observer Network on the morning of January 19, 1997.
Fig. 3. U.S. Geological Survey land cover classes for pre-1900s natural conditions (left) and 1993 land use patterns.
Fig. 4. Model simulated 2 meter minimum temperatures on the morning of January 19, 1997 for the pre-1900s scenario (top panel), the 1993 scenario (middle panel), and the difference of the two (1993 minus pre-1900s scenario; bottom panel).
Fig. 5. Time spent below freezing (minutes) for the night prior to the morning of January 19, 1997, for the pre-1900s land cover scenario (top), the 1993 land cover scenario (middle) and the difference of the two (bottom).
Fig. 7. Time series of 2 meter temperature for a model grid point located just south of Lake Okeechobee for the pre-1900s land cover scenario (filled circles) and the 1993 land cover scenario (open circles).
Regional Land-Use Change Effects on Climate in the Summer

R-272 at http://blue.atmos.colostate.edu/publications/reviewedpublications.shtml
FIG. 25. Regional average time series of accumulated convective rainfall (cm) from 1924 to 2000, with corresponding trend based on linear regression of all July-August amounts. The vertical bars overlain on the raw time series indicate the value of the standard error of the July-August regional mean.
FIG. 26. Same as in Figure 25, except for daily (a) maximum and (b) minimum shelter-level temperature (°C)
Fig. 2. Outer and inner grid configurations for RAMS domain centered on south Florida.
FIG. 4. Accumulated convective rainfall (mm) from the model simulations of July-August 1973 with pre-1900s land cover (top), 1993 land use (middle), and the difference field for the two (bottom panel; 1993 minus pre-1900s case).
FIG. 5. Same as in Figure 4, except for July-August 1989.
FIG. 6. Same as in Figure 4, except for July-August 1994.
Two-month average of the surface latent heat flux ($W \, m^{-2}$) from the model simulations of July and August 1994 with pre-1900s land cover (top), 1994 land use (middle), and the difference field for the two (bottom; 1994 minus pre-1900s case).
FIG. 13. Two-month average of the daily maximum shelter-level temperature from the model simulations of July-August 1989 with pre-1900s land cover (top), 1993 land use (middle), and the difference field for the two (bottom panel; 1993 minus pre-1900s case).
FIG. 17. Difference (1993 minus pre-1900s case) of the fields shown in Figure 16.
A More Appropriate Measure of the Radiative Forcing of CO$_2$
Arctic Sea Ice and Northern Hemispheric Snow Cover Changes
Fig. 1 (left). Observed decrease of NH sea ice extent during the past 25 years. **Fig. 2** (right). Observed and modeled variations of annual averages of NH sea ice extent. Observed data for 1901–98 are from Chapman and Walsh (13). Observed data for 1976–98 are from Parkinson et al. (16). The modeled sea ice extents are from the GFDL and Hadley Centre climate model runs forced by observed CO$_2$ and aerosols. Modeled data for ~250 years are smoothed by polynomials of degree 10 to estimate nonlinear trends caused by a change of external radiative forcing.
CONCLUSION

The earth’s climate system and human disturbance of the climate system is more complicated and multi-dimensional than commonly assumed. This may make skillful prediction of the future climate impossible!

There is a new direction emerging.