Using GLOBE and Other Observations to Validate Meteorological Models

Christopher A. Hiemstra and Roger A. Pielke, Sr.
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado
Introduction

- Meteorological data are used to drive land-surface, ecological, and hydrological models.

- In some areas, however, these data are not available (e.g., mountains, deserts, shrublands) or reliable.
LAPS

- The local analysis and prediction system (LAPS)
 - Meteorological data assimilation tool
 - Meteorological networks
 - Radar
 - Satellite
 - Aircraft
LAPS II

- LAPS
 - Uses observations to produce a “best fit” for three-dimensional atmospheric characteristics
 - 10 km horizontal resolution
 - Hourly temporal resolution
Objectives

- A rigorous examination of LAPS performance versus independent observations
 - 1 September 2001 to 31 August 2003

- Meteorological Variables
 - Temperature (°C)
 - Relative Humidity (%)
 - Wind Speed (m s⁻¹)
 - Precipitation (mm)
Methods

- **Simple linear regressions**
 - LAPS vs. observed
 - Temperature
 - Relative humidity
 - Wind speed
 - Precipitation

- **Site characteristics and estimate of variance (r^2)**
 - Land cover class ANOVA
 - National Land Cover Data, NLCD, 1992
 - Station elevation regression
Temperature Linear Regressions

Jarrow Montessori (Boulder, CO)
Assimilation vs. Obs. Mean Temp.
$y = 0.92x - 1.9$
$(r^2 = 0.94; p < 0.0001)$

Hays H. S. (Hays, KS)
Assimilation vs. Obs. Mean Temp.
$y = 0.93x - 1.8$
$(r^2 = 0.85; p < 0.0001)$

Alexander Dawson School (Lafayette, CO)
Assimilation vs. Obs. Mean Temp.
$y = 0.99x - 0.68$
$(r^2 = 0.83; p < 0.0001)$

Many Farms H. S. (Many Farms, AZ)
Assimilation vs. Obs. Mean Temp.
$y = 0.99x - 1.8$
$(r^2 = 0.94; p < 0.0001)$
Linear Regression r^2 Values

- Temp. (C): $n = 107$
- Rel. Hum. (%): $n = 99$
- Wind Spd. (m/s): $n = 99$
- Precip. (mm): $n = 96$

Compared Variables
r^2 Values and Land Cover

Temperature

Relative Humidity

Wind Speed

Precipitation

NLCD Cover Class
Elevation and r^2

$y = -0.00025x + 0.83$
($r^2 = 0.61; p < 0.0001$)
Concluding Remarks

- LAPS assimilations were remarkably accurate with respect to temperature and relative humidity
- Intermediate accuracy for wind speed
 - The relationship declined with an increase in elevation
Concluding Remarks II

- Precipitation estimates possessed the lowest accuracy
 - Observational error
 - Scaling issues

- Land Cover
 - Temperature and relative humidity accuracy did not change
 - Wind-speed accuracy did change, but some interactions with cover type
 - Precipitation accuracy was unaffected by land cover
Acknowledgements

- This work was funded by an NSF grant supporting the use of GLOBE data in research projects.
- Dr. Daniel L. Birkenheuer and Dr. Steve Albers of the Forecast Systems Laboratory (FSL), Boulder, Colorado.
- Data: Cold Land Processes Experiment (CLPX), Colorado Agricultural Meteorological Network (CoAgMet), High Plains Regional Climate Center (HPRCC), and GLOBE.