Changes in moisture and energy fluxes due to ground-water based irrigation in the Indian Monsoon belt.

E Douglas1, D. Niyogi2, S. Froliking3, J. Yeluripati1, R. Pieleke Sr. 4, N. Niyogi5, C. Vörösmarty3 and U. Mohanty1

1Complex Systems Research Center, Institute for the Study of Earth Oceans & Space, University of New Hampshire, Durham, NH
2Department of Agronomy and Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN
3Department of Atmospheric Sciences, Colorado State University, Ft. Collins, CO
4Consultant, Austin, TX
5Center for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi

Abstract

The Indian monsoon belt is home to a large part of the world’s population and agriculture is the major land-use activity in the region. In this paper we present a conceptual synthesis of the impact that agricultural activity can have on the atmospheric and regional climate through irrigation and its feedback on the atmospheric moisture flux and water cycles. The analysis builds on estimating the potential impact that irrigation and related agricultural activities have for modifying the atmospheric conditions within the Indian monsoon belt. These modified atmospheric conditions could potentially lead to changes in the interannual variability in the monsoon rainfall, and perhaps more directly to changes in the intensity of rain events. We found that vapor fluxes have increased by 10-25% (290 km²) with a 7% increase (117 km²) in the wet season and a 5.5% increase (223 km²) in the dry season. Two-thirds of this increase is attributed to irrigation; at least half of irrigation results in changes in groundwater storage which may be introducing additional water to the hydrologic cycle. The area-averaged change in latent heat flux across India was estimated to be 9 W m⁻². The largest increases in vapor and latent heat fluxes occurred where both cropped and irrigated lands were the predominant contemporary land cover classes (particularly northwest and south-central India). The largest decreases in vapor and energy fluxes occurred where the original most tropical forests were replaced by agriculture (particularly southern India). The impacts of these changes on other social and ecological factors affecting the water resource vulnerability and socio-economic, societal and water feedbacks are also highlighted.

Introduction

Human modifications to the hydrologic cycle are in few places felt as acutely and urgently as in India. India leads the world in total irrigated land and irrigation withdrawals represent 50% of all water use. Furthermore, more than 50% of total irrigated area is dependent on groundwater in India (CWC, 2000) and approximately 60% of irrigated food production depends on irrigation from groundwater (Shah et al., 2000). Between 1950 and 1985, surface water withdrawals for irrigation doubled, while groundwater withdrawals increased 113-fold (Sampat, 2000), resulting in rapidly declining groundwater levels (Kharif (wet) and Rabi (dry)) seasons. Groundwater-based irrigation, which determines the ability of a community to maintain its livelihood in unpredictable conditions, becomes an equally important factor. The influence of social structure is related to latent heat flux across India was estimated to be 9 W m⁻². The largest increases in vapor and latent heat

Changes in latent heat flux (W m⁻²)

Figure 2: The Impacts of Water Resource Vulnerability in India

Schematic of linkages (solid arrows) and interactions (dashed arrows) related to changes in the vulnerability of water resources in India due changes in the Indian Monsoon (modified from Pielke, 2004). Even though the availability of water is a key critical factor, the economy, which determines the ability of a community to maintain its livelihood in unpredictable conditions, becomes an equally important factor. The influence of social structure is related to latent heat flux across India was estimated to be 9 W m⁻². The largest increases in vapor and latent heat fluxes occurred where both cropped and irrigated lands were the predominant contemporary land cover classes (particularly northwest and south-central India). The largest decreases in vapor and energy fluxes occurred where the original most tropical forests were replaced by agriculture (particularly southern India). The impacts of these changes on other social and ecological factors affecting the water resource vulnerability and socio-economic, societal and water feedbacks are also highlighted.

Figure 3: Geospatial changes in latent heat fluxes (in W m⁻²) for kharif (wet season) and rabi (dry season) at resolution of 30 min (latitude by longitude). Negative changes denote decreases in vapor and latent can be implemented to insure a constant supply of water during droughts. Water quality is often determined by industrial waste, improper sanitation practices and natural disasters, as well as over population leading to over utilization of available resources. Changes in seasonal weather pattern, such as the Indian monsoon, would dramatically affect water resource availability and the economic and social factors that depend on it. These issues are not only directly related to the state of water resources, but are also linked to each other.

Figure 4: Percentage of ET flux difference attributable to different land use. Vapor fluxes increased by 1.5 times (340 km³) annually between the potential and the contemporary land cover scenarios, with a 7% increase (117 km²) in the wet season (kharif) and a 5.5% increase (223 km²) in the dry season (rabi). Although there was no significant seasonal difference in rabi crop areas, irrigated croplands showed an increase in vapor fluxes of nearly 25%. Between the kharif and rabi seasons. Groundwater-based irrigation contributed 14% of the vapor fluxes in kharif and 35% in rabi.

References

Alapaty K., Seaman N., Niyogi D., Hanna A., 2001. Assimilating Surface Data to Improve the Accuracy of Atmospheric Boundary Layer Simulation of cloud and water vapor mixing ratio fields at 21 GMT on May 15, 1991 obtained with the J. Jacobs, persn. comm., 2005), which approximates the proportion of AET method recommended by the Food and Agricultural Organization. AET was computed by Meti (et al., 1999). Contemporary (agricultural) land cover was simulated by overlaying estimated percentages of rainfed, irrigated and fallow cropland onto the potential land cover. The crop area dataset developed by Ramankutty and Foil (1999) was used to represent the spatial distribution of contemporary cultivated area, which matched well with published crop area when summarized at the country-level. State-level, seasonal rainfed, irrigated and fallow cropland areas for 1999-2000 were developed to be as consistent as possible with several state-wise data sets (Chanda et al., 2003; Frolking and Yeluripati, 2005). The gridrotted cropland areas from Ramankutty and Foil (1999) were then assigned fractional areas of seasonal cropping systems (irrigated, rainfed, fallow) based on the appropriate state-level values.

Vapor fluxes from irrigated cropland were set equal to ‘potential evapotranspiration’ (PET), which represents crop water demand in the absence of water limitations. Vapor fluxes from fallow land was set equal to ‘actual evapotranspiration’ (AET), which is limited by the available soil moisture. Vapor fluxes from fallow land was set equal to 25% of cropland AET (J. Jacobs, pers. comm., 2005), which approximates the proportion of AET attributable to soil (physical) evaporation alone. PET was estimated using the Shuttleworth and Wallace (1985) modification of the Penman-Monteith PET function, a physically-based method recommended by the Food and Agricultural Organization. AET was computed by the Water Balance Model (WBM; Vörösmarty et al., 1998), a physically-based, one-dimensional water balance model. For more details and results, see Douglas et al., (2005).

Figure 1: Effect of Agricultural Expansion on Regional Weather Patterns

Simulation of cloud and vapor mixing ratio fields at 21 GMT on May 15, 1991 obtained with a) (USGS-derived) landcover comprised of irrigated crops, shrubs and short-grass prairie and b) natural vegetation (short-grass prairie only). Clouds are depicted by white surfaces, with the sun illuminating the clouds from the west. The vapor mixing ratio in the planetary boundary layer is depicted by the green surface. The tan surface is the ground. The vertical axis is height, and the blue backplanes are the north and east sides of the grid domain (from Pieke et al., 1997).

Methodology

Two landcover scenarios were used in this study: estimated physical evaporation and transpiration from a potential (pre-agricultural) landcover and estimated physical evaporation and transpiration from a contemporary landcover. The potential vegetation simulation used the landcover dataset prepared by Meij et al. (1993). Contemporary (agricultural) landcover was simulated by overlaying estimated percentages of rainfed, irrigated and fallow cropland onto the potential landcover. The crop area dataset developed by Ramankutty and Foil (1999) was used to represent the spatial distribution of contemporary cultivated area, which matched well with published crop area when summarized at the country-level. State-level, seasonal rainfed, irrigated and fallow cropland areas for 1999-2000 were developed to be as consistent as possible with several state-wise data sets (Chanda et al., 2003; Frolking and Yeluripati, 2005). The gridrotted cropland areas from Ramankutty and Foil (1999) were then assigned fractional areas of seasonal cropping systems (irrigated, rainfed, fallow) based on the appropriate state-level values.

Vapor fluxes from irrigated cropland were set equal to ‘potential evapotranspiration’ (PET), which represents crop water demand in the absence of water limitations. Vapor fluxes from fallow land was set equal to ‘actual evapotranspiration’ (AET), which is limited by the available soil moisture. Vapor fluxes from fallow land was set equal to 25% of cropland AET (J. Jacobs, pers. comm., 2005), which approximates the proportion of AET attributable to soil (physical) evaporation alone. PET was estimated using the Shuttleworth and Wallace (1985) modification of the Penman-Monteith PET function, a physically-based method recommended by the Food and Agricultural Organization. AET was computed by the Water Balance Model (WBM; Vörösmarty et al., 1998), a physically-based, one-dimensional water balance model. For more details and results, see Douglas et al., (2005).