Regular Numerical Weather Prediction models aim to provide accurate forecasts for any weather pattern, topography, and landuse, therefore they require the numerical integration of the full motion and heat equations, and several parameterizations which notoriously increase the computational costs limiting the ability to produce reliable fine spatial scale real-time or near real-time weather forecasts. For example if a particular situation or weather pattern for a specific location, is known to be well approximated by a linear model then it is possible to use an analytical solution which has the advantage of being exact and runs considerably faster. Another possibility, with similar advantages, is to use an analytical solution for the linear component and integrate numerically only the nonlinear one. This approach already proved successful for the shallow water equation (Weidman and Pielke, 1983). A third possible approach consists in knowing whether the atmosphere is prevalently hydrostatic, because in this case pressure and temperature profiles can easily and quickly be obtained from each other, increasing the importance of remote sensing observations of one or the other variable. In other words, the knowledge of these important characteristics of the atmosphere allows to use a $\frac{1}{4}$ specialized models which simulate the weather in an accurate and time efficient fashion, since they would solve only the relevant part of the equations. With these applications in mind, Leoncini and Pielke (2005) investigate the relevance of several terms in the equations which simulate mesoscale dry flow equations over a wide range of temporal and spatial scales within the framework of Dalu et al. (2003). Specifically, a modified version of the Regional Atmospheric Modeling System was used to compute the individual terms of advection, Coriolis effect, buoyancy, and dynamical pressure, as they appear in the Laplacian of the geopotential, for the cases of linearized advection and fully nonlinear advection. In both cases, the atmosphere was forced with the same sensible heat fluxes. More specifically, Leoncini and Pielke (2005) found that the change in the Laplacian of the geopotential from linearized to full advection are due to the change in vertical gradient of buoyancy (b_ψ) and in the "residual" which depends upon the vertical derivatives of the background potential temperature, while Dalu et al. found that the main factors are the nonlinear advection of mass and the nonlinear advection of buoyancy. The main goal of this study is to address this discrepancy.

The Equations

In order to better explain these differences, and to validate and extend the conclusion of Dalu et al., we modified RAMS such that it integrates the same equations as in Dalu et al., with the ability to turn on terms which correspond to more general assumption. More specifically, assuming $f_\psi = \psi K u$ and $\nabla \cdot (\psi u) = \psi_\partial u / \partial z$ where ψ is the potential temperature and ψ the Exner function, the first important modification we made to RAMS is the large scale background state; it is assumed to be $\psi = \psi_0 + \psi_\phi$, but we adopted Dalu et al.$\psi_0 = \psi_\phi$. Dalu et al. also chose to define geopotential as $\psi = \psi_0 + \psi_\phi$, while RAMS uses ψ_0 only. As per the u and v-momentum equations (see in Table 1), and represented turbulence with a constant eddy coefficient K. u_0 is set to a constant value for the linearized advection case, and u_0 for the full advection one. With these modifications and definitions, the u and v-momentum equations are identical (see Table 1). The third column of Table 1 shows two additional terms which have been dropped from the right hand side during the Reynolds averaging in Dalu et al., but that will be retained when extending the theory. Defining buoyancy as $b = \phi - \varphi_0 - \psi_\phi$, again Table 1 shows that also the w-momentum equation in our version of RAMS is essentially identical to Dalu et al. For the equation also two terms neglected in Dalu et al. can be retained. RAMS in its original form is shown in Table 1, and with all the above definitions and modifications, and allowing only the vertical advection of the background potential temperature also this one is identical to Dalu et al. b_ψ equation if multiplied by ψ_ϕ. RAMS continuity equation has not been modified since compressibility should be negligible (Kemp and Wilhelm 1978) and keeping track of the Exner function tendency allows to verify this assumption.

The Methods

In order to retain as many similarities as possible with Dalu et al., (2003), we held the Coriolis term constant, and ran 2D simulations. We also set the eddy viscosity coefficient K, equal to 8 to simplify the analytical solution and to avoid boundary condition related issues, RAMS was forced only by a periodic (in time and space) heat flux divergence exponentially decreasing with height of the form:

$$Q = Q_0 \exp \left(-\frac{z}{L_z}\right) \cos \left(\frac{2\pi t}{T} + \frac{2\pi x}{L_x}\right)$$

Q_0 and L_z were both held constant for every simulation, respective values are 5.78703×10^{-5} K s$^{-1}$ (or 5 K day$^{-1}$), and 1000 m. The initial pressure profile was originally chosen for the regular hydrostatic background state, and therefore the model was run for 30 min without any forcing to reach a balanced state with negligible vertical velocities. An important environmental parameter is the lapse rate which was 3 K km$^{-1}$, up to 1 km, and increasingly stable up to the tropopause. The vertical grid spacing was the same across all the simulations and had an initial size of 25 m, with a stretching of 1.12. The horizontal wavelength L_x was 10 km. Initial tests demonstrated a significant sensitivity to resolution and grid spacing of one forth of the wavelength was chosen, so that simulations would have a good numerical representation of the wave with no significant damping or phase shift. Domain encompassed two full wavelengths. Every simulation was carried out for the spin up time until one hour correspondent to the wave period. The background wind was always westly of either 0 or 2.5 m s$^{-1}$. Every configuration was run with the full and with linear advection (FA, LA) as described in the introduction. During the simulations all the terms of the Poisson equations for b_ψ are diagnosed, according to:

$$\nabla^2 b_\psi = \nabla \cdot (\nabla T) + f v_x + b_\psi$$

which corresponds to Dalu et al. Eq. 32, and where T is the operator that accounts for the time derivative, the Rayleigh friction, and the advection. Subscripts indicate derivatives. The first term represents the linear pressure and the third the vertical derivative of buoyancy, in which is embedded the time evolution of the convergence of buoyancy advection. The above mentioned terms are responsible for the changes in the geopotential, according to Dalu et al. Also the differences FA-LA are also evaluated, to at least estimate the different contribution to the nonlinear geopotential.

Conclusions and Future Work

In agreement with Dalu et al. (2003), the nonlinear convergence of mass is responsible for the changes in the Laplacian of the geopotential over most of the atmosphere, at least in cases presented here, that is a forcing period of 1 h, wavelength of 10 km, and a large scale background wind of 0 and 2.5 m s$^{-1}$. In the immediate future, we plan to extend this analysis to a wider range of scales, in space and time. Specifically, we plan to more carefully evaluate the significance of the buoyancy advection by running simulations with no Rayleigh friction and zero background wind, that is when the evaluation does not involve integral equations, and for which we can easily compute an analytical solution, that will provide further credibility to the model. Lastly we will evaluate the terms of the equations that have been neglected in order to extend the theory to a more realistic atmosphere. In the longer term specialized independent models will be built and comparisons against regular NWP mesoscale models will be carried out.