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Abstract

A brief overview of chaos theory is presented, including bifurca-
tions, routes to turbulence, and methods for characterizing chaos.
The paper divides chaos applications in atmospheric sciences into
three categories: new ideas and insights inspired by chaos, analysis
of observational data, and analysis of output from numerical models.
Based on the review of chaos theory and the classification of chaos
applications, suggestions for future work are given.

1.Introduction

Nonlinear phenomena occur in nature in a wide
range of apparently different contexts, such as hydro-
dynamic turbulence, chemical kinetics, electronics,
ecology, and biology; yet they often display common
features or can be understood using similar concepts,
permitting a unification of their studies. The similarity
of complicated behaviors is not a superficial similarity
at the descriptive level; instead, it concerns experi-
mental and theoretical details. This similarity results
from the modern theory of nonlinear dynamical sys-
tems, which describes the emergence of chaos out of
order and the presence of order within chaos. This
includes such features as solitons, coherent struc-
tures, and pattern formation, as well as chaos theory,
which makes use of fractal dimensions, Lyapunov
exponents, the Kolmogorov—-Sinai entropy, and other
quantities to characterize chaos. In this paper, only
chaos theory will be reviewed.

Many of the publications in the past few years
concerning chaos applications to the atmosphere
have concentrated on the evaluation of fractal dimen-
sions from observational data. The existence of low-
dimensional climate and weather attractors is a highly
debated subject. A more difficult task is to find con-
crete examples that show the significance of such
computations. However, it needs to be emphasized
that these computations are just a small portion of the
applications of chaos theory to the atmosphere.

The purpose of this paper is to give a brief overview
of chaos theory and to discuss its applications to the
atmosphere. Instead of discussing any concepts or
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specific subjects in detail, we attempt to give an overall
picture of the field. We usually cite the original refer-
ences and more recent review papers so that inter-
ested readers can easily find more detail concerning
particular fields of study and can find places to start
their own research in this field. Chaos theory is re-
viewed in section 2. Applications of chaos theory tothe
atmosphere are discussed in section 3. Conclusions
and suggestions for future research are given in
section 4.

2.Chaos theory

a. Background

Liand Yorke (1975) seemto be the firstto introduce
the word chaos into the mathematical literature to
denote the apparently random output of certain map-
pings, although the use of the word chaos in physics
dates back to L. Boltzmann in the nineteenth century
in another context unrelated to its present usage.
However, there is still no universally accepted defini-
tion of the word chaos. Usually, chaos (deterministic
chaos) refers to irreqular, unpredictable behavior in
deterministic, dissipative, and .nonlinear dynamical
systems. It should be emphasized that chaos cannot
be equated simply with disorder, and it is more appro-
priate to consider chaos as a kind of order without
periodicity. It was demonstrated in Lorenz (1963) that
the sensitive dependence on initial conditions of a
nonlinear system is related to the aperiodic behavior of
the system.

By dynamical system we mean any system, what-
ever its nature, that can be described mathematically
by differential equations or iterative mappings. Some-
times, we alsoinclude systems where the exact present
state only approximately determines a near-future
state: this extended definition of a dynamical system
admits many real physical systems (such as the atmo-
sphere plus its ocean and terrestrial boundaries),
whose behavior commonly involves at least some
randomness or uncertainty (Lorenz 1990). In a dissi-
pative dynamical system, a vast number of modes die
out due to dissipation, and the asymptotic state of the
system can be described within a subspace of a much
lower dimension, called the attractor. Chaos can also
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occur in Hamiltonian or conservative systems, but this
subject requires special methods due to the absence
of an attractor. Chaos may also occur in quantum
systems where the number of degrees of freedom is
larger than the number of independent commuting
operators (Berman 1990). Another behavior, called
intransitivity, which is different from chaos but related
to it, also occurs in some, but not all, dynamical
systems. An intransitive system is one with a
positive probability of acquiring any one of several
sets of infinite-term (or very long-term) properties
(Lorenz 1990). In this paper, only deterministic chaos
in dissipative nonlinear dynamical systems will be
discussed.

There were classical physicists and mathemati-
cians, even in the previous century, who had thought
aboutnonlinear dynamical systems. Hadamard (1898)
first observed the sensitivity of solutions to initial
conditions at the end of the last century in a rather
special system called geodesic flow. Subsequently,
Poincaré (1908) discussed sensitivity to initial condi-
tions and unpredictability at the level of scientific
philosophy. (Poincaré even went on to discuss the
problem of weather predictability!) However, their
ideas seem to have been forgotten until Lorenz (1963)
rediscovered them independently more than half a
century later in his elegant paper entitled “Determinis-
tic Nonperiodic Flow.” The primary reason for this long
hiatus is that chaos defies direct analytic treatment,
making numerical computation essential. Therefore,
Lorenzis generally regarded as the firstto discoverthe
irregular behavior and to analyze it quantitatively in
completely deterministic, dissipative systems. He used
a set of three equations, drawn from the spectral
equation set of Saltzman (1962), to model the nonlinear
evolution of the Rayleigh—Bénard instability (i.e., the
instability that results when a fluid layer subjected to
gravity is heated sufficiently from below). This model
is also equivalent to a low-order quasigeostrophic
model derived from shallow-water equations (Lorenz
1980) or derived from a two-level baroclinic model
(Klein and Pedlosky 1992). By a careful analysis of the
numerical solutions combined with analytical reason-
ing, Lorenz was able to deduce that the solution of his
equations is eventually trapped in a region of the
system’s phase space thathas a very intricate (strange)
geometric structure, and this solution is very sensitive
to the initial conditions.

Eight years later, Ruelle and Takens (1971), mak-
ing use of then-recent developments in mathematics,
proposed a possible mechanism for the transition from
laminar flow to turbulence. Ruelle and Takens were
the first to introduce the concept of a strange attractor,
which is topologically different from other attractors,
such as point attractors, which lead to steady-state
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solutions, limit cycles, which lead to periodic solutions,
and tori, which lead to quasiperiodic solutions. The
name strange attractor refers to its unusual proper-
ties, the most significant being sensitivity to initial
conditions: twoinitially close trajectories on the attractor
eventually diverge from one another. Strange attractors
are finite-dimensional, and, in some sense, they cor-
respond to exciting only a finite number of degrees of
freedom; yet they have an infinite number of basic
frequencies (Ruelle 1990). These two independent,
pioneering papers triggered an upsurge of interest
among researchers in different fields in an attempt to
gain new insights. Since then, especially since 1975,
publications related to chaos have grown extremely
rapidly, and it is not the purpose of this paper to review
all of this progress. Many of the historical papers on
chaos were assembled into a single reference volume
by Hao (1984). A comprehensive treatment of chaos
theory with a readable account of many aspects of the
subject may be found in Bergé et al. (1984). A
nontechnical discussion of chaos is given in Gleick
(1987). The concepts of chaos, fractal dimensions,
and strange attractors, and their implications in me-
teorology, are presented in Tsonis and Elsner (1989)
in a very readable way. Some more recent references
can be found in, for example, Campbell (1990) and
Marek and Schreiber (1991). However, most of the
progress in this field so far may be roughly divided into
two different categories: one involves bifurcations and
routes to turbulence, and the other consists of quan-
titative means to recognize, characterize, and classify
attractors. Here, we give only a brief review: usually
only the original references and a few review papers
will be cited.

b. Bifurcations and routes to turbulence

Ruelle and Takens (1971) showed thatthe Landau—
Hopf route to turbulence (Landau 1944; Hopf 1948) is
unlikely to occur in nature, and they instead proposed
a route based on four consecutive bifurcations: fixed
point — limit cycle — 2-torus — 3-torus — strange
attractor (turbulence). A few years later, in collabora-
tion with Newhouse, they reduced this scheme to fixed
point — limit cycle — 2-torus — strange attractor. In
other words, quasiperiodic motion on a 2-torus (i.e.,
with two incommensurate frequencies) may lose sta-
bility and give birth to turbulence directly (Newhouse et
al. 1978). This result also implies that, usually, there
are only four types of stable attractors (fixed point, limit
cycle, 2-torus, and strange attractor) in a nonlinear
dynamical system. This route, called the Ruelle—
Takens route to turbulence, is generic and is known to
occur in many mathematical models and laboratory
experiments, but it remains less well understood theo-
retically than the other two routes mentioned below.
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In an excellent review, May (1976) called attention
to the very complicated dynamics, including period
doubling and chaos, that can occur in very simpie
iterative mappings. Subsequently, Feigenbaum (1978,
1979a) discovered scaling properties and universal
constants for one-dimensional mappings, and he in-
troduced renormalization-group theory into this field.
In addition, Feigenbaum proposed another route to
turbulence, which is now called the Feigenbaum or
period-doubling route to turbulence: a period-doubling
bifurcation cascade with periods p=2"(n=0,1,2,...)
that quickly converges to an aperiodic orbit as n — oo,
This scenario is extremely well tested in both numeri-
cal and physical systems. The period doublings have
been observed in experiments such as Rayleigh—
Bénard convection.

The third route, called the Pomeau—Manneville
route to turbulence, is through intermittency (Pomeau
and Manneville 1980; Manneville and Pomeau 1980).
Inthe context of chaos, the term intermittencyrefers to
random alternations of chaotic and regular behavior in
time without involving any spatial degrees of freedom.
This is slightly different from the original meaning of
intermittency in the hydrodynamic theory of turbu-
lence, which denotes random bursts of turbulent mo-
tion on the background of laminar flow. This scenario
and the Feigenbaum scenario are, in fact, twin phe-
nomena (Hao 1984), but the mathematical status of
this third route is somewhat less satisfactory than
those of the other two routes mentioned above, be-
cause, within its parameter regime, there is an infinite
number of (very long) stable periods, and because
there is no clear understanding of when the turbulent
regime is reached or what is the exact nature of this
turbulence (Eckmann 1981). Intermittent transitions to
turbulence have been seen in many physical experiments.

Although we are facing a situation of “all routes lead
to turbulence,” the above three routes are the most
thoroughly studied. The Ruelle-Takens route is re-
lated to Hopf bifurcations, where a pair of complex
eigenvalues of the linearized map cross the unit circle;
the Feigenbaum route is associated with pitchfork
bifurcations, where an eigenvalue crosses the unit
circle at —1; and the Pomeau—Manneville route is
associated with saddle-node bifurcations, where an
eigenvalue crosses the unit circle at +1. A more
detailed discussion of these routes is given in a review
paper by Eckmann (1981). Related to bifurcations are
crises of chaotic attractors, which are abrupt changes
of strange attractors themselves at certain parameter
values; this subject is discussed in Grebogi et al.
(1982) and Sommerer et al. (1991).

The reason for such intensive studies of the routes
toturbulence is the belief that the key to understanding
turbulence may be hidden in its onset mechanism, as
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pointed out by Landau (1944). Turbulence has been a
long-standing problem in physics. It is no longer a
specific problem in hydrodynamics; instead, it has
become a general concept, relevant to many fields of
science (e.g., solid-state turbulence, chemical turbu-
lence, acoustic turbulence, and optical turbulence).
On the other hand, it needs to be emphasized that
chaos, at least for the time being, concerns mainly
irregular behaviors in the temporal evolution, and is
related only to the onset mechanism of turbulence—
i.e., to weak turbulence. In contrast, fully developed
turbulence involves both temporal and spatial irregu-
larities. Patterns and spatiotemporal chaos were dis-
cussed in Campbell (1990). A recently deveioped
technique called the wavelet transformation (Meneveau
1991, and references therein) provides a new tool for
studying spatial intermittency and spatiotemporal
nonlinear variations.

c. Characterization of chaos

A simple way to characterize attractorsis via power-
spectrum analysis, which is often used to qualitatively
distinguish quasi-periodic or chaotic behavior from
periodic structure and to identify different periods
embedded in a chaotic signal. Chaos is characterized
by the presence of broadband noise in the power
spectrum. For example, Feigenbaum (1979b) used
power-spectrum analysis to study the onset spectrum

There are three distinct intuitive notions
of dimension: the topological dimension,
... related to the number of directions in
a space; the fractal (or Hausdorff)
dimension, . . . related to the capacity of
a space; and the information dimension,
... related to the measurements made in

of turbulence. Poincaré maps (e.g., Berge et al. 1984)
are sometimes also helpful in analyzing chaos. More
sophisticated tools include Lyapunov exponents and
various definitions of dimension.

1) DIMENSIONS OF ATTRACTORS

In dissipative systems, the dimension D of an
attractor is lower than the dimension k of the original
phase space (which will be defined in section 2c¢),
since some modes will damp out due to dissipation.
There are three distinct intuitive notions of dimension:
the topological dimension, which is related to the
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number of directions in a space (Hurewiczand Wallman
1948); the fractal (or Hausdorff) dimension, which is
related to the capacity of a space (Mandelbrot 1983);
and the information dimension, which is related to the
measurements made in a space (Farmer 1982). The
topological and fractal dimensions require only a met-
ric (i.e., distance) for their definitions, whereas the
information dimension needs both a metric and a
probability measure for its definition (Farmer 1982).
For simple attractors such as fixed points, limit cycles,
or two tori, the separate notions of dimension lead to
the sameinteger value. However, for chaotic (strange)
attractors, these dimensions may be different, and the
latter two may be noninteger.

In practice, the fractal dimension is the most widely
used. It is one of the commonly used measures of the
“strangeness” of attractors and is related to the num-
ber of degrees of freedom. It provides a lower bound
on the number of dependent variables needed to
describe the time evolution of the dynamical system,
and, for a simple system, the Whitney embedding
theorem (Takens 1981) provides an upper bound.
However, for complex systems such as the atmo-
sphere, the conditions of the Whitney embedding
theorem may not be satisfied, and this upper bound
may not be valid. The analysis of the correlation
dimension (Grassbergerand Procaccia 1983a), which
is used as an estimate of the fractal dimension, also
provides useful information about the variability of the
system, information that goes beyond the bounds of
traditional linear statistics. Such analyses reveal the
extent to which the actual variations are concentrated
on a limited subset of the space of all possible varia-
tions (Pierrehumbert 1990).

The fractal dimension mentioned above is some-
times called monofractal, and a multifractal spectrum
is more appropriate for describing many systems.
~ Multifractal measures are fundamentally character-
ized not by a single dimension value, but by a dimen-
sion function, which is simply related to a probability
distribution (e.g., Lovejoy and Schertzer 1990, and
references therein). This dimension function D, pro-
vides an infinite number of different (and relevant)
generalized dimensions (multifractal dimensions) that
characterize an attractor. It is shown in Hentschel and
Procaccia (1983) that D, is the Hausdorff dimension,
D, is the information dimension, and D, is the correla-
tion dimension (Grassberger and Procaccia 1983a).
Multifractal measures can also be characterized by a
spectrum F(a) of singularities, and a formal relation-
ship between D, and F(«) is derived by Halsey et al.
(1986). Further refinements are discussed in, for ex-
ample, Lovejoy and Schertzer (1990, and references
therein). Inthe case of multifractality in fully developed
turbulence, She and Orszag (1991) offered an expla-
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nation of the physics behind the multiple exponents—
namely, local distortion of turbulent structures, which
modifies the behavior of higher-order moments
differentially.

The fractals described above are often called thin
fractals to distinguish them from fat fractals, which are
sets with fractal structure, but a nonzero measure
(Eykholt and Umberger 1988). These latter sets are
characterized by a fat-fractal exponent, rather than a
dimension. They allow quantitative analyses of sensi-
tivity to parameters, final-state sensitivity, and quan-
tum chaos. Because they have finite measure, fat
fractals must have the same (integer) dimension as
the underlying space, and, as a result, their dimension
is insensitive to their fractal structure.

2) LYAPUNOV EXPONENTS OF STRANGE ATTRACTORS

The complexity of a strange attractor cannot be
characterized merely by its dimension: such an attractor
must be stretched and folded in some directions as
well. These more subtie features can be described by
Lyapunov exponents.

Lyapunov exponents are the average rates of expo-
nential divergence or convergence of nearby orbits.
The spectrum of Lyapunov exponents provides a
guantitative measure of the sensitivity of a nonlinear
system to initial conditions (i.e., the divergence of
neighboringtrajectories exponentially intime), and itis
the most useful dynamical diagnostic for chaotic sys-
tems. Lyapunov exponents are independent of initial
conditions on any orbit (Eckmann and Ruelle 1985).
Any system containing at least one positive Lyapunov
exponentis defined to be chaotic, with the magnitudes
of the positive exponents determining the time scale
for predictability. There are as many Lyapunov expo-
nents as the dimension of the phase space
(Guckenheimer and Holmes 1983}, and, for a system
of coupled ordinary differential equations, one of these
exponents is necessarily equal to zero, meaning that
the change in the relative separation of initially close
states on the same trajectory is slower than exponen-
tial. The negative exponents express the exponential
approach of the initial states to the attractor. In any
well-behaved dissipative dynamical system, the sum
of all of the Lyapunov exponents must be strictly
negative (Guckenheimer and Holmes 1983).

Related to the Lyapunov exponents is the
Kolmogorov—Sinai entropy (Kolmogorov 1958; Sinai
1959), whose inverse gives an estimate of the mean
e-folding time of the initial growth of small errors. If the
Lyapunov-exponent spectrum can be determined,
then the Kolmogorov—Sinai entropy is bounded by the
sum of all of the positive exponents (Eckmann and
Ruelle 1985), and the fractal dimension may be esti-
mated from the Kaplan—Yorke conjecture (Fredrickson
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et al. 1983), which will be explained later. Further-
more, the Lyapunov-exponent spectrum can be used
to constrain the choice of mapping parameters in a
prediction problem (Abarbanel et al. 1990). Note that
Lyapunov exponents are the time averages of the
local (temporal) rates of divergence. Higher moments
of these local rates are also helpful in understanding
the fine structure of the attractor.
Forlow-dimensional systems, even without a knowl-
edge of the exact values of the Lyapunov exponents
(which are important, as discussed in the previous
paragraph), a knowledge of their signs alone can
provide a qualitative characterization of the attractor.
For instance, in a three-dimensional phase space, a
set of three negative Lyapunov exponents (-, —, -)
corresponds to a fixed point, (0, —, —) toalimitcycle, (0,
0, -) to a 2-torus, and (+, 0, -) to a strange attractor.

3) COMPUTATION OF CHAOTIC QUANTITIES

The computation of dimensions and Lyapunov ex-
ponents requires the technique of phase-space recon-
struction. For a system of known first-order ordinary
differential equations (ODESs) or difference equations,
the set of all dependent variables constitutes a phase
space—that s, a Euclidean space whose coordinates
are these variables. Each point in this phase space
represents a possible instantaneous state of the sys-
tem. A solution of the governing equations is repre-
sented by a particle traveling along a trajectory in this
phase space. If the solution is chaotic, then this
trajectory is a strange attractor. Note that a single point
inphase space determines this entire future trajectory,
since such a point represents a complete set of initial
conditions for the governing equations. In particular,
this means that distinct phase-space trajectories can
never cross, which is not the case in the three-
dimensional physical space. Basically, these are the
reasons that phase space is the natural setting for
studying the time evolution of physical systems.

For a system with known partial differential equa-
tions (PDEs), the system can usually be studied by
discretizing the PDEs, and the set of all dependent
variables at all grid points constitutes a phase space,
which is an approximation to the original infinite-
dimensional phase space. Forsuch a system (e.g., the
atmosphere), an additional difficulty is that the initial
values of many of the variables may be unknown.
However, a time series of a singie variable of a
complex system may be available, and this allows the
attractor of the system to be reconstructed. The phys-
ics behind such a reconstruction is that a nonlinear
system is characterized by self-interaction, so that a
time series of a single variable can carry the information
about the dynamics of the entire multivariable system.

When dealing with a time series, the attractor can
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be reconstructed by any of three methods: the method
of delay (Takens 1981), the method of derivatives
(Packard et al. 1980), and the singular-value decom-
position method (Broomhead and King 1986), which is
also referred to as principal-component analysis or
empirical-orthogonal function analysis in the litera-
ture of atmospheric science. These three methods
can sometimes be improved by linear filtering, but
such filtering must be done carefully, since it may
increase the dimension of the time series (Badii et al.
1988). At this time, there is no general agreement
about which method is best. However, for a short time
series of low precision, the simple method of using
delay coordinates is widely used, and it has been
shown t6 work reasonably well in many situations
(Zeng et al. 1992a,b, and references therein).

When delay coordinates are used with an infinite
amount of noise-free data, the time delay = can be
chosen almost arbitrarily (Takens 1981). However,
when only a limited amount of noisy data is available,
the quality of the analysis depends on the value
chosen for 7. The appropriate choice of this delay time
depends sensitively on the attractor under study (Frank
et al. 1990). Different methods have been suggested
for obtaining 7, including the space-filing method
(Fraedrich 1986), the method of computing the
autocorrelation function, and the mutual-information
method (Fraser and Swinney 1986; Fraser 1989). The
mutual information measures general dependence,
rather than linear dependence. For long time series,
the mutual-information method may be the most com-
prehensive method; however, for many systems, it
does not provide substantially different delay times
than the other methods. Furthermore, in practice,
when the data size is limited, it may not be possible to
compute the mutual information accurately. In con-
trast, the autocorrelation function can be computed
from small datasets, and the value of + computed
using this method does not differ substantially from the
value based on higher-order autocorrelations. There-
fore, for short time series of low precision, the simple
autocorrelation method, combined with the space-
filling method, may be used to determine the delay
time 7 for use in defining the delay coordinates.

It is usually difficult and impractical to compute
various dimensions directly. Among the different pro-
cedures that have been developed to estimate fractal
dimensions are the nearest-neighbor method (Badii
and Politi 1985), the correlation-integral method
(Grassberger and Procaccia 1983a), and the singular-
system method (Broomhead and King 1986). Some
information about the quality of the results obtained
with the different methods has beenreported (Holzfuss
and Mayer-Kress 1986). In practice, the correlation-
integral method is the most widely used, and the
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correlation dimension v, given by Grassberger and
Procaccia provides a rigorous lower bound to both the
information dimension and the fractal dimension (or
Hausdorff dimension), and all three are generally
close in value.

When the Lyapunov-exponent spectrum A, (i = 1,2,
..., N) with A, = A, = ... = A, can be obtained, the
Lyapunov dimension D, is given by the Kaplan—-Yorke
conjecture (Fredrickson et al. 1983):

/
D, = I+ I/\I+1l_1 Z )‘/'v
j=1

where /is defined by

1+1

;o
DA=0>D A
j=1 j=1

This dimension is related to the information dimen-
sion (Fredrickson et al. 1983), and its value is usually
close to that of the correlation dimension. For systems
of known ODEs or mappings, the Lyapunov-exponent
spectrum can be obtained, and this provides a simple
method for estimating the dimension. However, for a
very complex system (e.g., the atmosphere), we can-
not determine all of the Lyapunov exponents accu-
rately from observational data, so this relation cannot
be used.

The Lyapunov exponents can be computed rela-
tively easily for simple known model systems (Shimada
and Nagashima 1979). However, in many real-world
situations, all that is available is a time series of
experimental data, and it is much more difficult to
extract the Lyapunov exponents from such a series.
Only in the past few years have such methods been
proposed. These methods differ only with respect to
the orthonormalization method (Gram-Schmidt
orthonormalization or Householder QR decomposi-
tion), the local mapping method (linear or higher-order
polynomial), and some technical details. Early meth-
ods were based on the linearized mapping and either
Gram-Schmidt orthonormalization (Wolf et al. 1985;
Sano and Sawada 1985) or QR decomposition
(Eckmann et al. 1986). Most of the later methods were
based on Eckmann et al. (1986), replacing the linear-
ized mapping with higher-order Taylor series (Briggs
1990; Bryant et al. 1990; Brown et al. 1991), and/or
using the singular-value decomposition technique to
determine the. embedding dimension (Stoop and Parisi
-1991). Based on the work of Sano and Sawada (1985)
and Eckmann et al. (1986), we have recently proposed
a practical method for estimating the Lyapunov-expo-
nent spectrum from short time series of low precision
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(Zeng et al. 1991). A detailed discussion of different
algorithms and related techniquesin Zengetal. (1992b)
has shown that this algorithm works for short time
series of low precision, while most of the above meth-
ods are useful only when the time series are long and/
or have high precision.

When the correlation dimension can be estimated
reliably, a relatively easy procedure for computing the
Kolmogorov-Sinai entropy (Kolmogorov 1958; Sinai
1959) was developed by Grassberger and Procaccia
(1983b). When the Lyapunov exponents can be ob-
tained, the Kolmogorov-Sinai entropy is bounded by
the sum of all positive exponents. The finite and
positive Kolmogorov-Sinai entropy is a basic quantity
characterizing chaotic behavior, and its inverse gives
an estimate of the mean predictability time of the
system.

3. Applications of chaos theory

We divide chaos applications (e.g., in the atmo-
sphere) into three broad categories: new ideas and
insights inspired by chaos, analysis of observational
data, and analysis of output from numerical models.

a. New ideas and insights

The first category consists of new ideas and physi-
cal insights inspired by chaos. Just as relativity elimi-
nated the Newtonian illusion of absolute space and
time, and as quantum theory eliminated the Newtonian
and Einsteinian dream of a controllable measurement
process, chaos eliminates the Laplacian fantasy of
long-term deterministic predictability. Because of
chaos, itis realized that even simple systems may give
rise to and, hence, be used as models for complex
behavior. Conversely, complex systems may give rise
to simple behavior (e.g., coherent structures), which
may be predicted for a period of time within the
predictability limits. Finally, and most important, the
laws of scaling and complexity hold universally, caring
not at all about the details of the system. Chaos leads
to the unification of order and disorder, and to the
unification of deterministic and stochastic descriptions
(Lorenz 1987). Chaos also acts like a bridge between
research in traditionally unrelated fields: in fact, the
International Federation of Nonlinear Analysts (IFNA)
was established in August 1991, with members in a
variety of scholarly disciplines. Much of Lorenz’s re-
search presents excellent examples of how physical
insights and new ideas can be gained by studying

- chaos (e.g., Lorenz 1991a, and references therein).

Although chaos places a fundamental limitation on
long-term prediction, it suggests a possibility for short-
term prediction: random-looking data may contain
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simple deterministic relationships, involving only a few
irreducible degrees of freedom. Therefore, chaos theory
has also been used for prediction problems, especially
when there is a lack of proper initial data for use in a
numerical prediction model, or when a good model is
lacking (Abarbanel et al. 1990; Elsner and Tsonis
1992; and references therein). Elsner and Tsonis
(1992) also reviewed the prediction problemsinvolved
with neural networks. This is currently a very active
research area.

Since realistic atmospheric models, with or without
stochastic terms, ordinarily have general solutions
that are aperiodic, they tend to yield similar resuits in
either case (Lorenz 1987). This is the implicit assump-
tion behind numerical weather predictions based on
deterministic approaches. Note, however, that this
does not mean that the atmosphere actually is deter-
ministic, since, for example, external forcing such as
solar output may need to be represented stochastically.

As mentioned in section 2c¢, Lyapunov exponents
are the time averages of the local (temporal) rates of
divergence, and higher moments of these local rates
are helpful in understanding the fine structure of the
attractor. Nese (1989) investigated both the temporal
and phase-spatial variations in predictability of the
Lorenz mode! (Lorenz 1963). Nicolis (1992) devel-
oped a probabilistic approach accounting for the vari-
ability of error growth in the atmosphere and applied it
to a low-order model (Lorenz 1990). Nicolis found a
wide dispersion around the mean, showing the inad-
equacy of a description limited to averaged properties
only. Since Lyapunov exponents and the Kolmogorov—
Sinai entropy are related to the predictability of a
system, the longevity of the enhanced predictability
periods often observed in the atmosphere can be
quantified by computing the higher statistical mo-
ments of error growth rates. In fact, itis argued in Benzi
and Carnevale (1989) that the ratio of the average
growth rate to the most probable one is a measure of
enhanced predictability. It is also shown that the
atmospheric predictability depends on the scales of
the flows, on the flow regimes, on the time average (in
contrastto instantaneous values), and on measures of
forecast skills (Schubert et al. 1992; Zeng 1992; and
references therein).

Lorenz (1969) hypothesized that the growth of
small initial errors in the atmosphere follows a qua-
dratic law, and this hypothesis has been verified for
several numerical models (Lorenz 1982a; Dalcher
and Kalnay 1987; Trevisan et al. 1992). However,
deviations from this hypothesis are also observed
(Chen 1989; Schubert and Suarez 1989). Nicolis and
Nicolis (1991) showed that the time evolution of initial
errors in unstable systems follows three different
stages: the initial exponential stage, the quasi-linear
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stage, andthe saturation stage. The first stage reflects
local (linearized) properties, and the last two stages
depend on global properties.

Chaos theory in dissipative dynamical systems
(e.g., the atmosphere) has shown that, no matter how
large the original phase space, the final state may be
described by motions in subspaces (attractors) of
much lower dimension. Low-order models obtained by
truncating atmospheric governing equations are often
used as a first step toward studying atmospheric
processes. After all, chaos was found by Lorenz
(1963) in a truncated model. In general, low-order
models are often capable of representing atmospheric
processes in a qualitatively correct manner, and a
general procedure for constructing them was dis-
cussed by Lorenz (1982b). The influence of truncation
onthe results in Lorenz (1990) was discussed by Wiin-
Nielsen (1992). Charney and DeVore (1979) were the
first to study the multiple equilibrium states in the
atmosphere in a truncated barotropic model. The
influence of truncation on the existence of multiple
equilibria was studied by several researchers (Tung
and Rosenthal 1985; Cehelsky and Tung 1987; and
references therein). The influence of the level of
dissipation and the form of the dissipation mechanism
on the dynamical behaviors (including the chaotic
behavior) of unstable baroclinic waves was studied by
several researchers (Klein and Pedlosky 1992, and
references therein).

The proper description and modeling of turbulent
energy dissipation processes are vital for the under-
standing of fully developedturbulence. Meneveau and
Sreenivasan (1987) proposed a multifractal model of
the energy-cascade process in the inertial range that
fits remarkably well the entire spectrum of scaling
exponents for the dissipative field in fully developed
turbulence. Furthermore, it has been shown that
multifractal dimensions for the physical phenomena
that arise from cascade processes can be character-
ized by three universal parameters that represent the
degree of multifractality, the sparseness of the aver-
age energy, and the degree of conservation of the
analyzed field (Schertzer and Lovejoy 1991a, and
references therein). Several methods have been pro-
posed to estimate these universal multifractal expo-
nents (Schmitt et al. 1992, and references therein).

Scale invariance is a symmetry principle in which
the small and large scales are related by a scale-
changing operation that depends only on the scale
ratios; there is no characteristic size. However, it
usually cannot be applied directly to geophysical sys-
tems (including the atmosphere) due to the high
anisotropy of the system caused by differential strati-
fication, rotation, and other more complex scale-chang-
ing operations. The need to deal with scale-invariant
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anisotropy has led to the development of a model of
generalized scale invariance (Schertzer and Lovejoy
1991a, and references therein). This model unifies the
large- and small-scale dynamics by using an anisotro-
pic regime with a single scaling, rather than the con-
ventional use of two distinct isotropic regimes: a two-
dimensional regime for the large-scale dynamics and
a three-dimensional regime for the small-scale dy-
namics. The scaling hypothesis has been confirmed
by many empirical studies of geophysical phenomena
(Lovejoy and Schertzer 1991, and references therein)
and, recently, by more systematic analyses (Lovejoy
et al. 1993).

Climate dynamics has been a highly active re-
search area in recent years, partly due to the concern
over possible significant global change caused by
increased levels of greenhouse gases. Using a very
low-order geostrophic baroclinic “general circulation”
model, Lorenz (1990) demonstrated the reasonable-
ness of his earlier proposition that the climate system
is unlikely to be intransitive—that is, to admit two or
more possible climates, any one of which, once estab-
lished, will persist forever. Lorenz also showed that
chaos and intransitivity can lead to interannual vari-

ability by means of nonlinear wave—mean flow interac- -

tions. Pielke and Zeng (1993) integrated this low-order
model for about 1100 years and found that, when the
seasonal cycleisincluded, chaos and intransitivity can
lead not only to interannual variability, as in Lorenz
(1990), but also to the long-term natural variability on
decade and century time scales that is as large as
what occurs between years or within a year.

Nicolis (1990) outlined a general algorithm for cast-
ing deterministic chaos into a Markovian process and
illustrated the theory by some examples of interest in
atmospheric and climate dynamics. Such a statistical
approach can be used for the long-term predictions of
complex systems undergoing chaotic dynamics, such
as the climate system. Tsonis and Elsner (1990b)
used a forced nonlinear oscillator with damping to
study long-term climate dynamics, and found that the
system exhibits multiple attractors, that jumps be-
tween the attractors may take place in the presence of
noise and fractal basin boundaries, and that the resi-
dence time on each of the attractors is a random
variable whose mean value is different for each
attractor. They argued that such a mechanism may
provide an explanation for rapid deglaciations and the
factthatice ages donotlast as long as today’s climate.
Note that their results may not be contradictory to
Lorenz’s results mentioned above, because an ice-
age effect was not included in Lorenz (1990).

By finding chaos in Daisyworld (Watson and
Lovelock 1983), Zeng et al. (1990) and Flynn and
Eykholt (1993) raise questions regarding the interpre-
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tation and validity of the Gaia hypothesis that the
evolution of the biota and their environment are a
single, tightly coupled process with the self-regulation
of climate and chemistry as a fundamental property of
such a connected nonlinear system (Lovelock and
Margulis 1974; Lovelock 1989).

Using a conceptual model, Vallis (1986) explained
most of the principal qualitative features of the El
Nifio—Southern Oscillation phenomenon (including the
aperiodic occurrence of these events). Using two-
dimensional atmospheric flow, Rinne and Jarvinen
(1992) showed that, when the numerical approxima-
tions do not allow air parcels to deviate from each other
sufficiently, errors in the numerical approximations
can prevent the correct prediction of chaotic pro-
cesses. They proposed that this explains the errors
observed when forecasting blocking highs. Bretherton
(1990) used the turbulence cascade model of
Meneveau and Sreenivasan (1987) to study the en-
trainment process at stratocumulus cloud top and
found spatial intermittency in this entrainment process
(i.e., entrainment takes place predominantly in large
eddies), which can be tested by future aircraft mea-
surements. Gauthier (1992) showed that, due to differ-
ent local-error growth rates, the same observational
error can lead to very different accuracies when apply-
ing the adjoint method to four-dimensional data as-
similation.

Partial introductions to chaos and its applications to
the atmosphere have also been presented in Tsonis
and Elsner (1989) and Yang (1991). More applications
can be found in Schertzer and Lovejoy (1991b) and
Sreenivasan (1991). However, the influence of the
change from traditional viewpoints brought about by
the study of chaos still needs time to be fully observed,
just as was the case with relativity theory and quantum
theory. ‘

b. Analysis of observational data

The second category of chaos applications in-
volves the analysis of observational data. Chaos theory
offers a fresh way to deal with observational data,
especially those data that might otherwise be ignored
because they proved too erratic. Many chaotic studies
in the field of atmospheric science have concentrated
on computing quantities characterizing attractors, es-
pecially fractal dimensions, from observational data.
Nicolis and Nicolis (1984) analyzed the time series of
the isotope record of deep-sea cores and obtained a
low dimensionality (between 3 and 4) for the climate
system. Subsequently, Fraedrich (1986, 1987), Essex
et al. (1987), and Keppenne and Nicolis (1989) ana-
lyzed daily-average data over eastern North America
and western Europe, and have likewise concluded the
existence of low-dimensional attractors. Also, theo-
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ries of deterministic chaos and fractal structure have
been applied to data in the atmospheric boundary
layer (Tsonis and Elsner 1988), the pulse of storm
rainfall (Sharifi et al. 1990), and some special atmo-
spheric systems such as the Southern Oscillation
(Hense 1987). Using entire global fields of data, rather
than single-point time series, Pierrehumbert (1990)
discussed the dimension of global atmospheric vari-
ability.

The existence of low-dimensional atmospheric
attractors is currently a highly debated subject. It is
widely accepted now that there are limitations to the
Grassberger—Procaccia algorithm when the number
of data is limited. Some doubts among researchers
concerning strange attractors in the atmosphere were
discussed in Pool (1989). Qualitative data require-
ments needed to accurately calculate the chaotic
characteristics of a nonlinear system were discussed
in Essex et al. (1987) and Tsonis and Elsner (1990a).
Various researchers have given different quantitative
criteria, among which the criterion of Ruelle (1990) is
the least strict. In Zeng et al. (1992a), the time series
of observational data (with different climatic signal/
noise ratios) has a length that is comparable to or
greater than those used in previous stydies; however,
a saturated fractal dimension v, still could not be
obtained, and it could be claimed only that v, is well
above 8. Using the quantitative arguments of Ruelle
(1990) and Nerenberg and Essex (1990), it is shown in
Zeng (1992) and Zeng et al. (1992a) that most, if not all,
of the previous estimates of low-dimensional attractors
are unreliable. Based on simple models, Lorenz (1991b)
proposed that, if a low fractal dimension can be ob-
tained from observational data, this may instead reflect

. the weak nonlinear interaction between the observed
variable and the othervariablesin the atmosphere. This
gives another possible reason for apparently finding
low-dimensional attractors in the atmosphere.

The above evaluations of fractal dimensions were
carried out in phase space. However, such analyses
can also be carried out for trajectories in physical
space. Fraedrich and Leslie (1989) and Fraedrich et
al. (1990) analyzed the data of cyclone tracks in the
tropics and the midlatitudes both in phase space and
in physical space. They found that the predictability of
cyclone tracks depends on their geographical loca-
tions and the flow regimes. Gifford (1991) analyzed
the observational data of poliutant concentrations and
obtained a fractal dimension of 1.6 to 1.7 for the
trajectories of the pollutants. This can be useful for
large-scale atmospheric diffusion modeling, which
currently assumes a fractal dimension of 1.5 (i.e.,
ordinary Brownian motion). Using satellite data for
clouds, Cahalan and Joseph (1989) studied the spa-
tial structure of the atmospheric boundary layer and
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the clouds of the intertropical convergence zone by
examining the change in the fractal dimension for
various conditions (e.g., the cloud type). The relation-
ship between fractal dimension and turbulent diffu-
sion, as well as general fractal concepts, was re-
viewed in Ludwig (1989).

it should be emphasized that the estimation of
fractal dimensions from observational data is just a
small portion of the applications of chaos theory to the
atmosphere. A more fundamental question is: Even if
alow-dimensional atmospheric attractor does exist for
a particular type of atmospheric flow, how do we
actually construct a mathematical mapping from justa
few parameters to the actual atmospheric flow pat-
terns related to the dominant physical processes
revealed by the analyzed data? In a recent study by
Zeng and Pielke (1993), a low-dimensional atmo-
spheric attractor was obtained for surface thermaliy
induced atmospheric flow, and parameters or physical
processes related to these low dimensions were dis-
cussed. A linear model can be used to provide the
mathematical mapping from the physical processes to
the atmospheric flow fields that capture the salient
features of the system. This study aiso implies that a
low fractal dimension does not necessarily mean that
the system can be described by a few equations; more
generally, alow dimension means that the system can.
be described by a mathematical mapping from a few
key physical processes or parameters to the flow
fields. As far as we know, this is the first study in which
such a mathematical map is actually given.

As mentioned before, a multifractal analysis is more
appropriate for describing geophysical systems.
Lovejoy and Schertzer and their groups have applied
multifractals and generalized scale invariance to the
study of radiation processes, satellite imagery of clouds,
radar precipitation data, turbulence data, and other
types of data (Lovejoy et al. 1993, and references
therein). The multifractal properties of energy dissipa-
tion derived from turbulence data have also been
studied by many researchers (Aurell et al. 1992, and
references therein). Aurell et al. also discussed the
occurrence of spurious scaling due to finite Reynolds
number effects in the computation of multifractal di-
mensions (Halsey et al. 1986).

Related to the estimation of fractal dimensions is
the estimation of Lyapunov exponents from observa-
tional data (Keppenne and Nicolis 1989; Zeng et al.
1992a). The relationship between predictability based
on computing Lyapunov exponents and that based on
general circulation models and the relationship be-
tween local and global predictabilities were also dis-
cussed in Zeng et al. (1992a). In contrast to the
estimation of fractal dimensions, there are still no
extensive discussions concerning the qualitative and

639



quantitative data requirements for the computation of
Lyapunov exponents. One brief study is that of
Eckmann and Ruelle (1992), in which they claim that
the number of data points needed to estimate Lyapunov
exponents is about the square of that needed to
estimate the correlation dimension. Some uncertain-
ties caused by the selection of the time delay were
reported in Zeng et al. (1992a), but were not men-
tioned in a similar study by Keppenne and Nicolis
(1989).

The analysis of observational data is not limited to
the estimates of chaotic quantities. Ghil and Vautard
(1991) used singuiar-spectrum analysis to analyze
time series of global surface air temperature for the
past 135 years, allowing a secular warming trend and
a small number of oscillatory modes to be separated
from the noise. They showed that the combined ampli-
tude of the oscillatory components (i.e., the natural
variability) could postpone incontrovertible detection
of a possible greenhouse warming signal for one or
two decades.

¢. Analysis of output from numerical models

The third category of applications of chaos theory
deals with output from numerical modeis such as
general circulation and mesoscale models (Zeng and
Pielke 1993). As mentioned in section 2¢, when the
number of model equations (at all grid points) is not too
large (e.g., less than 30), and when the parameteriza-
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tion of physical processes is not too complex, the
Lyapunov-exponent spectrum can be obtained di-
rectly (Shimada and Nagashima 1979), and the fractal
dimension can be estimated using the Kaplan—Yorke
conjecture (Fredrickson et al. 1983). In the case of
truncated models (e.g., 11 equations in Nese et al.
1987, or 21 equations in Lorenz 1991b), such meth-
ods can be used efficiently to estimate Lyapunov
exponents and the fractal dimension. However, fur-
ther work is needed to determine under what condi-
tions (e.g., the number of model equations and the
complexity of the parameterizations) such direct com-
putations are practical.

For atmospheric numerical models, such as gen-
eral circulation models, which typically have 10° grid
points, the direct application of the method (Shimada
and Nagashima 1979) is impractical, and the compu-
tation of chaotic quantities is the same as in the case
of observational data. However, more data can be
obtained from model output, and the phase space can
be constructed more conveniently by using variables
at different (and appropriate; that is, not closely corre-
lated) locations. This avoids the problem of select-
ing an appropriate time delay, and significantly de-
creases the computational cost of estimating fractal
dimensions.

The chaotic analysis of model output also provides
a new way to compare model results with observa-
tions. It must be true that an accurate numerical
simulation should produce fractal dimensions and
Lyapunov exponents similar to those obtained from
observational data. Further work is needed in this area.

4. Conclusions and suggestions for
future research

Chaos theory has been reviewed, and its applica-
tions to the atmosphere have been divided into three
categories. This can be summarized schematically in
Fig. 1. This overview and classification also demon-
strate that the current emphasis on the computation of
fractal dimensions from observational data and the
debate regarding the existence of low-dimensional
attractors in the atmosphere represent just a small
portion of applications of chaos theory to the atmo-
sphere.

Since this work has evolved from our research on a
variety of topics, a number of suggestions for future
research have become apparent. Some of these sug-
gestions relating to atmospheric research are men-
tioned here.

Although qualitative and quantitative data require-
ments have been established for the computation of
monofractal dimensions, the corresponding require-
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ments for the computation of the multifractal spectrum
of dimensions or the Lyapunov-exponent spectrum,
which is more important dynamically, have not yet
been investigated. Further work is also needed to
study the practical significance of computing fractal
dimensions.

For high-dimensional complex systems (such as
the atmosphere), the reconstructed embedding di-
mension may be smaller than the actual fractal dimen-
sion. This may be related to the slight sensitivity to the
selected value of the time delay 7 in the computation
of the Lyapunov exponents from observational data,
as reported in Zeng et al. (1992a). It is assumed in
Zeng et al. (1992a) that at least the first few positive
exponents can be reasonably estimated. Considering
the practical significance of this assumption, further
work is needed.

Predictability is closely related to the Lyapunov-
exponent spectrum. We hypothesize that the predict-
ability should be universal for certain types of dynami-
cal systems. Stated in another way, our hypothesis is
that the error growth after certain rescaling should be
the same for families of nonlinear dynamical systems
(e.g., those with quadratic nonlinearities). One way to
test this hypothesis is to follow the milestone work of
Feigenbaum (1978, 1979a), which led to the well-
known Feigenbaum constants.

The estimation of Lyapunov exponents and predict-
ability is usually related to the growth of small initial
errors. Further work is needed to understand the
quasi-linear and saturation stages of error growth.

Noise reduction (Kostelich and Yorke 1990; Eisner
and Tsonis 1992; and references therein) is a very
active research area in nonlinear science. For ex-
ample, observational data can be processed by noise-
reduction techniques before four-dimensional data
assimilation.

Prediction based on observational data is also a
very active research area in nonlinear science, be-
cause it provides a more stringent test of the underly-
ing determinism in situations of a given complexity
(Abarbanel et al. 1990; Elsner and Tsonis 1992). This
is also helpful to atmospheric research (such as cli-
mate dynamics).

The computation of chaotic quantities and mutual
information (Fraser and Swinney 1986; Fraser 1989)
and the wavelet transformation (Meneveau 1991)
provide new tools for model output analysis and for
comparison of model results with observations. Fur-
ther workis needed to apply these methods to different
model outputs.

Note added in proof: Due, in part, to communica-
tions with several scientists, including Barry Saltzman,
Brian F. Farrell, John E. Hart, and Roger Barry, we
have become aware of several additional recent pub-
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lications related to applications of chaos theory to the
atmosphere. From laboratory experiments on oscilla-
tory flows over topography in a rotating fluid, Pratte
and Hart (1991) showed that periodic forcing can lead
to both periodic and chaotic behaviors. Using a sto-
chastic—dynamical global model of late Cenozoic cli-
matic change, Saltzman and Maasch (1991, and
references therein) demonstrated that both internal
dynamics and earth-orbital (Milankovitch) forcing are
responsible for the ice-age oscillations. Brindley et al.
(1992) discussed the effect of an extra periodic or
stochastic forcing on chaos and noisy periodicity in
two simple forced ocean—atmosphere models. Butler
and Farrell (1992) used three-dimensional optimal
(nonmodal) perturbations in viscous shear flow to
study the transition from laminar to turbulent flow.
Selvam et al. (1992) discussed a nondeterministic cell
dynamic system model for atmospheric flows. Tsonis
(1992) discussed chaos theory and its applications.
Waldrop (1992) presented a nontechnical discussion
of complexity theory, which examines the systems that
lie in the middle ground between the predictable and
the chaotic. Islam et al. (1993) pointed out that, when
a variable (e.g., precipitation) depends on physical
constraints and thresholds, the chaotic analysis of this
variable may lead to an underestimation of the corre-
lation dimension of the underlying dynamical system.
Using the simple model of Lorenz (1963), coupled with
alinear oscillator, Palmer (1993) explored the physical
basis for extended-range atmospheric prediction.
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