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ABSTRACT

This paper examines two coordinate representations for slope flow models, one a rotation of the coordinate
axes, the other a generalized vertical coordinate transformation. An analytic solution is developed in both
representations for a uniform slope to examine the differences due to slightly different forms of a generalized
hydrostatic equation. For the first transformation, velocity accelerations in the direction of the generalized
vertical coordinate are ignored, while for the second transformation, velocity accelerations perpendicular to
the terrain are neglected. Surprisingly, only the period of flow oscillation and not the mean strength of the
slope flow was changed in using the first coordinate representation instead of the second. Only for slopes
greater than 45° does the difference in periods between the two transformations exceed 30%. Differences
which may occur for nonuniform stopes, however, still need to be examined.

1. Introduction

As shown by Dutton (1976) and applied by Pielke
and Martin (1981; 1983), the derivation of physically
consistent mathematical relations for the equations
of motion in different coordinate systems is facilitated
by the use of tensor transformation procedures. In
this paper we utilize this approach in order to derive
equations in two distinct coordinate systems which
can be used to simulate slope flow? in a two-dimen-
sional model. The first transformation uses a gener-
alized vertical coordinate, while the second applies a
rotation of the Cartesian coordinate axes. Two gen-
eralized hydrostatic-like equations are defined for the
two transformations. For the first transformation,
velocity accelerations in the direction of the general-
ized vertical coordinate are ignored, while for the
second, velocity accelerations perpendicuilar to the
terrain are neglected. An outline of these transfor-
mations is given in Section 2; the derivation of the
pertinent equations for two-dimensional drainage flow
along a constant slope using these transformed systems

! Permanent affiliation: Seagram Centre for Soil and Water
Science, Faculty of Agricuiture, The Hebrew University of Jerusalem,
Rehovot 76100, Israel.

2 Following Fitzjarrald (1984), we refer to “slope flow” to indicate
flow due to cooling along a slope as opposed to “drainage flow”
which is a result of an initial buoyancy deficit.
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along with the two different generalized hydrostatic
equations are performed in Section 3. Analytic com-
parisons of the flow characteristics as represented in
both transformations follow in Section 4. Conclusions
of this paper are given in Section 5.

2. Methedology

As shown by Dutton (1976, p. 250), the equation
of motion can be written in general form as

' . ~afl 9 0 = .
T + ahih = —G'k(; 3;—,‘ + 5};) - Ze”kﬂjuk +f

)]

where the second term on the left is the covariant
derivative, G* the metric tensor, €* the permutation
tensor, ® = gz the geopotential and f* ‘the subgrid
scale friction. The velocity components #’ are in their
contravariant form. The remaining variables have
their usual definition.

In order to obtain the equations to be used for a
slope flow representation, the following assumptions
are made:

1) the Coriolis force can be neglected;
ii) the coordinate transformation is from the
Cartesian system.
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With these conditions, (1) can be rewritten as

~i
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If the Boussmesq assumption is made, Eq. (2) becomes
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where p’ = p — pp and p’ = py — p represent deviations
of pressure and density from a large-scale value. For
shallow atmospheric systems —gp'/po ~ g0'/6, (e.g.,
see Dutton and Fichtl, 1969; Pielke, 1984), so that
(1) becomes
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Equation (4) can be used to obtain the form of the
equation of motion in a transformation from the
Cartesian system to any other representation in which
a functional relation exists between the independent
variables in the two systems.

In this paper, two transformations are examined
which are, for simplicity, illustrated for two dimen-
sional formulations. The extension to three dimen-
sions is straightforward. The formulations are:

0’
—"x L@

Lx!'=x IL X' = x cosy + zsiny
X3 =z — z4(x) X3 = zcosy — x siny
x=x! x = X' cosy — X3 siny
z =X+ z5(X") z = X'siny + %3 cosy

where zg is terrain height and v = tan™![dz5/dx] is
the slope angle of the terrain (see Fig. 1). The
independent variables x and z represent an unrotated
Cartesian coordinate system:.

Transformation I represents a nonorthogonal gen-
eralized vertical coordinate transformation similar to
that discussed in detail in Pielke and Martin (1981;
1983) where the X coordinate is parallel to the
gravity vector and X' is along the terrain slope.

Transformation II represents an orthogonal rotation
in which X! is parallel and x* perpendicular to the
terrain. Both transformations are illustrated in Fig. 2.
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The orthogonal rotation is of the form commonly
used to develop idealized analytic models of slope
flow as summarized, for example, by Mahrt (1982)
and applied by McNider (1982). In Mahrt’s paper he
suggests that one advantage of such a coordinate

‘transformation is that the

gravitational force perpendicular to the ground is
approximately balanced by the pressure gradient force,
while the component of the gravitational force parallel
to the slope is not balanced and leads to downslope
acceleration.

This type of separation into a hydrostatic part and a
nonhydrostatic component is of substantial usefulness
in developing analytic (and numerical) slope flow
models and its application and generalization will
be explored in this paper using Transformations I
and IL

3. Transformations

a. Transformation I

Using the definition of G*, d%//9z and covariant
differentiation (see Pielke, 1984), and Transformation
I, we obtain

1 _ 9z
.. ox ax!
G* = 5 =—=(0,1).
¥z (%)ZH oz~ OV
ax ox

Eq. (4) can be written in component form for a
constant slope angle as:
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As emphasized by Pielke and Martin (1983), this
type of coordinate transformation has considerable
utility because a type of hydrostatic assumption can

SzG

3x

FiG. 1. The slope of terrain in terms of change in elevation
6z¢ and horizontal distance éx.
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FIG. 2. Representations of a drainage flow wind using the
contravariant (a) and covariant (b) forms of the velocity components
derived from Transformation I, and (c) using the velocity compo-
nents obtained by the orthogonal rotation Transformation II. The
magnitude and direction of the components of the vector in the
different representations have been given in terms of the Cartesian
velocity components # and w, and basis vectors i and k. The slope
3zg/0x = a and v is the slope angle.

be assumed valid in the X3 direction but accelerations
are still explicitly resolved in the terrain-parallel di-
rection, which, for nonzero slope, has a component
in the vertical direction. This form of hydrostatic
representation is different from that suggested by
Mahrt (1982), referenced earlier in this paper.

If the assumption is made in the X3 direction that
dii*/dt and f* are small relative to the other terms
(i.e., a sort of generalized hydrostatxc assumption),
(5) and (6) reduce to

o' dii '
— i o+t
a YTV
1 op’ 1 BZG ap *1
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Insertihg (8) into (5) and rearranging yields
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where a = 9z5/9x has been defined for convenience.
For flat terrain, this relation reduces to the original
Cartesian horizontal equation of motion.

A straightforward assumption for the frictional
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drag term f' in (7), for use in an analytic model in
which turbulence in the along slope direction is
neglected, could then be written as

Poe (k).

Integrating (10) vertically between the surface and
the top of the drainage flow 4 yields
%3=h 6121 at X3=h

Jldi® = K = s (11)

*3=0 a at X3=0

(10)

which could be used in a layered model of drainage
flow; K[o1'/3x°] at X* = 0 could be approximated as
Cp(i")?, for example, while K[dii!/d%>] at h could be
used to represent entrainment at the top of the
drainage flow. An additional advantage, therefore, of
using Transformation I is that the integration in (11)
is in the vertical direction rather than in the direction
perpendicular to the %> surface.

Returning to equations (7) and (8), analytic drainage
flow models can be developed using this equation of
motion which are in a different form than have been
used in the past for this type of meteorological
problem. A different perspective to the problem should
result from this representation, although as illustrated

n Section 4, at least for a simple analytic drainage
flow simulation, the differences obtained using the
two different coordinate systems are small.

b. Transformation IT

Using the definition of G*, d%'/dz and covariant
differentiation, and Transformation II, we get

G* = [1 0] : o _ (siny, cosy).

0 1 0z
Eq. (4) can be written in component form as
dit' . ou' 1 ép' 6’
- =——_—tg—- +f1 (12
T AT Tean T et/ (1)
oud | ., o0u° 1 ap’ 5
— 4 U g + g—cosy + 13
at %k podx? £ g ST+ (13

If a hydrostatic-type assumption is made in the %°
direction, as suggested by Mahrt (1982) for suﬂic1ently
small slopes, (12) and (13) reduce to

o' o' 14p ' .

—_ — = -+ g— + 14

o TE T T an g S f (14)
apl‘ !
—— = pog — . 15
20 P8 B cosy (15)

4. Simple analytical comparison of the transforma-
tions

In erder to compare quantitatively the result of the
differences in the two transformations, a layer inte-
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grated momentum and thermodynamic system can
be developed for a uniform slope configuration and
solved analytically.

The layer integrated thermodynamic equation can
be expressed in the general system by

60 + gk 90 90
o axk
where L, is the local warming rate for the integrated

layer including both radiative and turbulent processes.
Using 8 = 6, + 6’ where 6, is a function of z only,

p.

(16)

and assuming d6,/3t = 0, then
60' . 00 ., 00 60’)
—_ + + L. 17
o (”a+“af1“a (17)

For an infinite uniform slope, 36’/0x' = 0 and mass
continuity requires that #3 = 0. Thus using the chain
rule

6o 600 ax?
1
%' 9z axl’ (18)
so that (17) can be written as
a0’ ., 06 dx°
3 u! 7 37 T+ L.. (19)

For Transformation 1 the generalized hydrostatic
system for the uniform slope is

du' tany

_— — + 1

at (tan v+ 1) 0 U (20)
a6’
i —i'8 siny + L, 21

where #' and #' represent layer quantities, tany
= 9z5/0x, siny = dx3/9X' = 9z/8X' and B = 8, /0z.
Since the slope is uniform, dp’/dx' = 0 is assumed.
Following McNider (1982) take d/d¢ of (20) and
substitute for 40'/d¢ giving

71

Fi' g tany . _ 9
== —i#'Bsiny + L) +——
3T~ 6 Ganty + ) LRSIy H L)+ 5 (22)
or
(92 1 1
Yl + £ B cosy sin®yd! — 5g(; cosy sinyL, = a_ft
(23)

Although the frictional case is solvable, the frictionless
case can as easily permit an examination of the
transformation differences. Since the slope is uniform
and represents a single layer, the equation is an
ordinary differential equation which for /! = 0 be-
comes

d*u!
dr?

+ -5-,3 cosy sin’y#i! — 05 cosy sinyL, = 0. (24)
0 0
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In a similar manner the differential equation for
transformation II is

dx!
dr?

+ & ggin2yi! — Esinyl, =0, (25
0, 0,

where a caret rather than a tilde is placed over u' to
indicate that @' and #' are different velocities. Note
that the difference in the two equations [(24) and
(25)] is a cosy coefficient in the last two terms in
(24) so that the variation in the two formulations
increases for increasing slope angles. For initial con-
ditions

di' di
N=gl=0 —=""= 0
w=u =0 a dt
the solution for (24) [Transformation ‘I] becomes
il L (1 — cost?) (26)
,8 siny

where
7= g8 sin?y cosy.
bo

Likewise, the solution for (25) [Transformation II] is

L,
' = (1 — cost't) 2n
B siny
with
T2 = & sin?y.
bo

Somewhat surprisingly the mean speed of the
drainage flow is the same in both transformations
with only the period of oscillation in the katabatic
overshoot different. Physically this is due to the fact
that both the gravitational acceleration and adiabatic
deceleration terms in (24) contain the cosy coefficient
so that the mean effect is offset.

The change in period of the oscillation is only
weakly affected by the cosy term for small slopes. In
fact only for slopes greater than 45° does the difference
in periods between the transformations exceed ap-
proximately 30%. Thus, in spite of the variations in
the development of the transformations, for most
practical applications the transformations would yield
identical results.

5. Conclusion

This paper has examined two coordinate represen-
tations for slope flow models—one a rotation of the
coordinate axes and the other a generalized vertical
coordinate transformation. Different forms of gener-
alized hydrostatic equations were applied in the two
systems in order to examine the influence of these
different hydrostatic type assumptions on analytic
solutions to simple idealized slope flow. Surprisingly,
only the period of flow oscillation and not the mean
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