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' ABSTRACT

The impact of background atmospheric thermai stability and slope steepness on the daytime thermally induced
upslope flows was investigated using analytical and numerical model approaches. The study focuses on meso-
B domains and considers the noon and early afternoon period in which, in general, steady-state flows typically
occur during synoptically undisturbed days. The conclusions obtained with the analytical and numerical eval-
uations agreed. It was concluded that the maximum intensity of the upslope flow is generally not dependent
on the background atmospheric stability. Its relation to the amount of thermal heating and slope steepness is
evaluated. The steady-state characteristics of the daytime induced upslope flows were also evaluated.

1. Introduction

In many situations, daytime induced thermal cir-
culations along mountain slopes play a major role in
determining local weather and pollution dispersion.
Numerous observational and modeling studies have
been carried out to evaluate these circulations. Defant
(1951), for instance, reviewed the state of understand-
ing of these circulations at that time. He provided a
classical schematic illustration of the diurnal cycle of
thermal circulation. In the following years, observa-
tional studies (e.g., MacHattie, 1968; Whiteman and
McKee, 1977; Banta and Cotton, 1981; Whiteman and
McKee, 1982; Banta, 1984; Toth and Johnson, 1985;
among others) have provided further observational re-
finements into the characteristics of these flows. Nu-
merical model studies, such as Orville (1964), Mahrer
and Pielke (1977), Mannouji (1982), Bader and McKee
(1983), Tang and Peng (1983), and Banta (1984),
among others, have also enhanced our understanding
of these systems. Generally, however, relatively little
focused attention has been given in studies during the

" recent three decades to a specific evaluation of the re-
lationship between the atmospheric background ther-
mal stability, the slope steepness and the generation of
these flows. The existing classical evaluation of these
relationships is provided in Prandtl’s (1942) simplified
model solution. Some improvements to Prandtl’s so-
lution are reported by Gutman and Melgarejo (1981)
and Sorbjan (1983). However, as pointed out by At-
kinson (1981), in general there is a sparsity of theoret-
ical work on thermally induced upslope winds, while
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the effect of thermal stability on slope winds is unad-
dressed.

It is the purpose of the present study to further ex-
plore and refine the relationship between atmospheric
background stability, slope steepness and thermally in-
duced upslope flow (assuming negligible synoptic flow),
using an improved linear analytical procedure as well
as numerical model simulations. In the present study
the slope steepnesses were assumed to be less than 5°
in order to reasonably satisfy constraints required by
the linear solution. The slope steepnesses considered
in the study are involved with meso-g scales (i.e., hor-
izontal domain scale 20-200 km). Solutions involved
with the analytical methodology are presented in sec-
tion 2. Details relating to the numerical mesoscale
model used in the present study are given in section 3.
A summary of results obtained using the analytical and
the numerical model approaches is presented in section
4. Finally, the study focuses on situations involved with
a uniform background thermal stratification in the
lower atmosphere. It emphasizes the noon and early
afternoon hours in which the upslope winds usually
reach their peak values and are close to steady state.
Evaluations of the time scale needed in order to estab-
lish steady-state upslope flow are provided in sec-
tion 4c.

2. Analytical methodology

The classical solution of the daytime thermally in-
duced upslope flow by Prandtl (e.g., sece Defant, 1951)
is based on the assumption that the slope is infinite in
its length, the perturbation of the potential temperature
on the slope surface is uniform along the slope, the
Coriolis effect is neglected, and nonlinear advective ef-
fects are ignored. The resultant linear equations for the
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tendencies of the thermally induced upslope wind
component ' and the perturbation in potential tem-
perature, 8’, from the background values (the Prandtl
model equations) are ‘

W .8 ou
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where A = g/6,, is the buoyancy parameter, 8y = 96,/
9z, is the atmospheric background thermal stability, K
is the vertical eddy exchange coefficient, and « is the
angle of terrain slope.

The Prandtl solution of Egs. (1) and (2), in the steady
condition through an infinitely deep atmosphere, as-
suming K = constant, are as follows:

~ 3)

8" = A exp(—2z/1) cos(z/1) 4)

u'= )\_A_G exp(—z/1) sin(z/!)

where Af is the potential temperature perturbation
along the slope surface from the free atmosphere at
the same height; N is the Brunt-Viisild frequency,
N = (MBo)"% and [ is a scale height such that /
= (2K/N sina)'? = h/x, where h is the upslope depth..
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F1G. 1. Upslope wind profiles with a background thermal stability,
fo =20 K km™, K = 50 m?s™! and A8 = 2.8 K, according to
Prandtl, as well as for Case A and Case B with 2 = 1414 m with
o = 0.60 and a = 5°.
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TABLE 1. The dependence of maximum upslope wind, ¥/, and
the height of Umaxs Mo, O Bo in the Prandtl solution and for Case
A, with Af = 28 K; a = 0.6°, 1.2° and 5.0°, K = 50 m® s7;
h = 1414 m for Case A.

Bo :
(K km™) 1.0 2.0 40
a Woax Mo W Mo U Man
©) - (ms™) (@) @ms!) (m mshh (m)
0.6 Prandl 50 1083 35 942 25 753
CaseA 24 659 2.1 612 . 18 565
12 Prandl 50 706 3.5 612 25 471
Case A 39 565 33 518 25 471
50 Prandti S0 376 35 282 25 235
Case A 50 376 35 282 25 235

Some illustrations of the Prandtl solution charac-
teristics for daytime induced upslope flows are provided
in Fig. 1. The upslope wind profiles 1 and 4 in Fig. 1,
which correspond to a = 0.6° and 5°, respectively,
were calculated according to Eq. (3) with 8, = 2.0 K
km™!, K= 50 m?s7!, and A0 = 2.8 K. In the Prandtl
solution, the value of the maximum wind speed,
Umax, 1S not dependent on the slope steepness; however,
the height at which up,,, is obtained decreases with
increasing steepness. On the other hand, for a given
slope, increasing the background atmospheric thermal
stability, 8o, while keeping Af constant, leads to a re-
duction in . as shown in Table 1.

The solution for daytime thermally induced flow
along slopes suggested by Gutman and Melgarejo
(1981) differs from the Prandtl solution by assuming
that K varies according to the similarity theory within
the surface layer and increases continuously above that
layer.

In this section, additional modifications in the orig-
inal Prandtl model assumptions were evaluated, in or-
der to investigate the impact of slope steepness and
atmospheric stability on daytime generated slope flows,
while assuming steady-state conditions (see section 4c
for estimation of the time scale needed to establish a
nearly steady-state flow). Three cases, illustrating var-
ious physical aspects of upslope flow, are presented.
The motivation for selection of the cases involved
evaluating common assumptions applied in other
studies of slope flow as well as providing more physi-
cally refined solutions. The following cases were
adopted.

a. Case A: Solution is limited to the boundary layer
depth

Equations (1) and (2) are solved within a limited
height, 4, which corresponds to the planetary boundary
layer (PBL) depth instead of an infinite depth atmo-
sphere as used in the Prandtl solution. A constant K
and steady conditions are assumed within that layer
(in the Prandtl solution, K is assumed to be constant
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within an infinite depth). The boundary conditions
imposed on Egs. (1) and (2) are

 u'=0 at z=z and z=h (5)
0'=A0 at z=zy and #'=0 at z=h (6)

where z, is the surface roughness height (generally z,
< z). The condition that ¥’ = 0 at the top of the PBL
assumes that the PBL height separates the upslope flow
layer from the return flow perturbation above it. It has
been indicated to be a reasonable approximation, for
example, by the numerical modeling studies of Anthes
(1978), Mizzi and Pielke (1984), Segal et al. (1986) and
the observational study by Johnson and O’Brien (1973).

The solutions for ¥’ and 8’ under steady-state con-
ditions are

2)/1] sin[(z— zo)/1]1+ Au'  (7)

0" = AG expl(zo— 2)/1] cosl(z— zo)/I]1+ A0, (8)

The first terms on the right-hand side of (7) and (8) are
the same as the Prandtl solution given in (3) and (4),
with the Au’ and Af’ terms reflecting a correction to
the original Prandtl solution. A detailed derivation of
(7) and (8) is provided in appendix A.

u’—)\A—aex [(zo—
N pl(Zo

b. Case B: As Case A, except for a prescribed 8'; K is
a constant with height, however, it is dependent
onh

Equation (1) is solved within a boundary layer with
depth, A, as with Case A. However, it is assumed that

K is dependent on thermal stability through the relation

K = Kyh, where Kj is a constant with units of length

per time (see appendix B for details and definition of

Ko). Since during the daytime the boundary layer has

a bulk lapse 8 close to neutral, 8’ can be derived from

the following relation:

30 a6y 96"
+

®

where 8 is the potential temperature above the slope
surface. Because of the linearity involved with Prandtl’s
equation, the advection of 4 in his solution is involved
only with the background potential temperature [i.c.,
(u' sina)dfo/dz]. However, since during the daylight
hours, the PBL is closely neutral (i.e., 8 = 30/9z ~ 0),
the value of |(36'/9z)| is nearly as large as |(860/8z2)|.
From a physical point of view, the linearity requirement
in the Prandtl solution, which neglects the term (96/
9z)u’ sina in Eq. (2), leads to an inaccurate evaluation
of ‘the related advection within the PBL. Therefore,
estlmatlng 6' based on (9) rather than predicting it using
Eq. (2), is expected to improve the accuracy of the up-
slope flow solution.

Using (9) and the boundary condition (6) provides
the followmg relation for 6"

"= A8 — Bo(z — zo) ~ Bo(h — 2) (10)
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where 8, = 30y/3z = constant is assumed. Substituting
(10) into (1) and integrating (1) with respect to z under
steady condition using boundary condition (5), results
in the following solution for #":

' A sma Bo

~oKoh - (1

( 2—h%) 4+ (A0 + Bozo)h—2)|.

-c. Case C: As Case B, except for a parabolic K profile

The equations are solved as in Case B; however, the
eddy diffusion coeflicient, K, has a parabolic profile
within the PBL:

K=Koz(1 —z/h) (12)

where K is a constant defined in (B3) of appendix B.
This type of profile has its maximum at z = 4/2. It
provides a profile that is analogous to the K profile
associated with the cubic polynomial approximation
suggested by O’Brien (1970) (see appendix B), which
has been adopted in many boundary-layer modeling
studies.

The mathematical solution in this case, assuming
boundary condition (C2), is

AQ; sina E1-9
- —(1-2
2K, h’(so(l = so)) {1=26)
ln(l—;—g)
X l(—l—f_o) —2E+1 (13)
n e ——
&
where

E=z/h; Eo=zo/h; Qs=%hA0.

A detailed derivation for this case is provided in ap-
pendix C.

3. Numerical model simulations

The analytical solutions in the previous section were
derived under the assumptions that the slope is infinite
and the eddy diffusion exchange coefficient has the
form of a constant or a parabolic profile with height.
In the real world, however, slope extent is, of course,
limited. ‘Additionally, the specification of a realistic
profile of an eddy exchange coefficient, which should
depend on thermal and dynamic processes, is not so
simple as to be constant or parabolic. Nonlinear ad-
vective effects resolved by the numerical model could
also be important. Therefore, in order to evaluate the
analytical results, a set of numerical model simulations
(see Table 2 for their description), designed to evaluate
the impact of background atmospheric thermal stability
and terrain slope on thermally induced upslope flow,
was carried out. A two-dimensional hydrostatic prim-
itive equation model was used, whose formulation is
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TABLE 2. Description of the numerical model simulations.

Case Simulation description

C1 upslope flow; summer case (15 August); background ther-
mal stability sensitivity experiment
C2 upslope flow; summer case (15 August), slope angle sensi-
tivity experiments; slope-plateau case
upslope flow; summer case (15 August), slope angle sensi-

C3
. tivity experiment; ridge case

given in detail in Pielke (1974), Mahrer and Pielke
(1977) and McNider and Pielke (1981), and will, there-
fore, not be presented here.

The two-dimensional model consists of 14 vertical
levels, ranging from near surface to 7 km (the model
levels for potential temperature and specific humidity
~ and related initial values are given in Table 3). Two
thermal stratifications were adopted in the simulations
(i) with a potential temperature gradient of 2 K km™!
in the lower 2500 m of the atmosphere and 3.5 K km™!
above this layer (which is referred to as 8o = 2 Kkm™)
and (ii) as in (i) but with a potential temperature lapse
of 6 K km™! in the lower 2500 m and 3.5 K km™! aloft
(referred to as B = 6 K km™'). The simulated domain
extended horizontally for 250 km and was resolved
with a grid interval of 5 km. The soil input parameters
are given in Table 4.

The numerical model results for cases involved with
daytime induced thermal flows along slopes have been
validated successfully in various studies (e.g., Segal et
al,, 1982; Abbs, 1986; Abbs and Pielke, 1986; among
others). These studies indicated a reasonable skill of
the-model in resolving flows such as those involved
with the present study.

4. Analysis

‘a. Dependence of upslope i‘ntensity on background
thermal stability

" 1) ANALYTICAL RESULTS

(1) Comparison of Case A and Case B with the
Frandil solution. The results for Case A, as compared
to the Prandtl solutions, are given in Table 1. Generally,
the presented characteristics for Case A are similar to
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when the background atmospheric thermal stability,
Bo, increases. The most noticeable difference between
Case A and the Prandtl solution as indicated in Table
1 is computed when the slope angle is reduced and the
thermal stratification approaches neutral.

Figure 1 provides additional comparisons, consid-
ering Prandtl profiles and these obtained for Case A,
for slope angles 0.6° and 5° with the same 8y = 2.0 K
km™' and Af = 2.8 K, while assuming /# = 1414 m for
Case A. Figure 1 shows that there is almost no differ-
ence between the profiles in Case A (profile 5) and the
Prandtl profile (profile 4) with a = 5°. However, with
a = 0.6°, the Case A profile (profile 2) and the Prandtl
profile (profile 1) are substantially different; the upslope
flow computed by Prandtl’s formulation is much
stronger than that in Case A. This feature suggests that
the correction of the original Prandtl solution [Eqgs. (3)
and (4)] through the term Au’ in Eq. (7) becomes sig-
nificant as slope steepness reduces and as thermal sta-
bility tends toward neutral. The cause of this pattern
appears to be related to the possible excessive depth of
the upslope flow layer, A, predicted by the Prandtl .
model for these situations. For example, based on the
definitions of / and N and the relation 4 = 7/ using the
values K =50 m?s™!, g/0 = 0.03ms 2K, 8, =20K
km™! as used for the solutions of Fig. 1, the values of
h are about 3500 m for « = 0.6° and 1210 m for «
= 5°, The value of 7 when a = 0.6° is higher than
commonly observed values and is much larger than
the given height, 7 = 1414 m, in Case A. However,
with @ = 5° it has nearly the same value as that in
Case A. _ :

Figure 1 also indicates that the wind profiles in Case
A (profile 2) and Case B (profile 3) are similar. This is
because the linear profile of ' computed using (8) in
Case A is closely identical to that derived in Case B
using Eq. (10) (see Fig. 2). Figure 2 shows that in Case
A the profile of 6’ is nearly linear for « = 0.6° (profile
1), but the profile for « = 5° (profile 2) is nonlinear
using values of 8y, A6, K and 4 as used for Fig. 1. The
difference in 6’ profiles is explained by the fact that
when « decreases in value (also when S, tends to neu-
tral) and the vertical transport of the heat energy term,
Bou' sina, becomes small, as compared to the turbulent
friction term K§%6'/3z%, assuming a steady condition,
then Eq. (2) reduces to

. - 2

those of Prandtl’s solution: upslope maximum flow, 3_0' _
, . : . K—=0 (14)

Umax, as well as-its corresponding height, 4, , reduces 9z
TABLE 3. The numerical model levels for potential temperature and specific humidity and the related initial values.
Level (m)

10 325 750 200 400 ‘600 800 1050 1350 1750 2500 4000 6000 7000
qikg™ "17.2 16.9 16.9 15.0 14.0 13.0 8.5 8.0 5.5 42 1.2 1.2 1.2 1.2
8(K) Bo=2Kkm™ 2993 2993 299.4 299.6 300.0 3004 300.8 3013 3019 3027 3042 309.5 3165 3200
Bo=6Kkm™ 2993 299.4 299.7 300.4 301.6 302.8 304.0 3055 307.3 309.7 314.2 326.5 330.0

3195
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TABLE 4. The soil parameters used in the
numerical model simulations.

Albedo

of the Surface Soil Soil Soil

surface roughness  conductivity density specific heat
0.2 4cm 0.003cm?s™! 1.5gcem™  1.33 J/g-deg

where (14) results in a linear solution for 6’ with height.
In such a situation, the profiles of ' and 6’ estimated
in Case A are coincident with these computed in Case
B. Calculation with the values of A6, K, 8, and & used
in Fig. 1 indicates that the value of Sou’ sina for a
= 0.6° is one order of magnitude less (~107° K s7')
than that of K8%0'/0z% (~107* K s7!); however, Bou’
X sina for @« = 5° is about the same magnitude as
K&0'/9z% (~107* K s7"). ,

(i1) Upslope flow intensity as dependent on 3y, h and
Af. In the following, we will discuss the impact of
background thermal atmospheric stability, 5, on the
upslope flow characteristics according to Eq. (11) (i.e.,
Case B) when (a) Af is assumed to be a constant and
(b) & is assumed to be a constant. Assumptions (a) and
(b) are common in various analytical studies evaluating
daytime induced upslope flows.

From Eq. (10), the height of the PBL can be ap-
proximated using Af and S, as

h~ A/B,. (15)
Substituting (15) for 4 into (11) for small z, results
in
A sina
U~ (2 —Boz/AAB ~ By z)z. (16)
6K, .

The maximum upslope wind and its corresponding
height as dependent on §;, for Case B, are

(A0
Uhax = 6.4 X 1072 sin 17
KoBo * (17
B = 0.53A6/Bo. (18)

Equations (17) and (18) indicate that for a given
slope angle «, the maximum upslope wind and its cor-
responding height decrease with increasing Gy, while
keeping Af constant. Additionally, differentiating Eq.
(16) with respect to 3o yields

(19)

Equation (19) shows that du'/d8 < 0, since using the
relation (15) results in 28yz/A8 = (2z/h) < 3. Namely,
the magnitude of the perturbation wind speed is re-
duced with increasing 8.
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On the other hand, combining Egs. (10) and (11)
and eliminating A6, results in

: 2 2
,  Asina 30[(2 +2h%) hz]z.

U ~ Kok 3 (20)

The maximum upslope wind and its corresponding
height as dependent on 83, are

N
Uinae ~ 6.4 - 10\8o sina— @1
K, .

By, =~ 0.53h. (22)

Equations (20) and (21) show that for a given slope
angle, the upslope wind u’' and u},.x are proportional
to By, when A remains constant.

The conclusions on the relation between upslope
flow intensity and B, when A# is kept constant, Eq.
(16), and when # is kept constant, Eq. (20), are appar-
ently in contradiction. It is suggested, therefore, that a
different physical parameter that relates to 4 and Af is
needed for an adequate evaluation of upslope intensity.
This requirement is outlined in the next subsection.

(iii) Dependency of upslope intensity on (3, and the
thermal function Q, (based on Cases B and C). Assum-
ing an amount of heat, Q, is injected at the surface
into a unit volume o{the PBL with a depth, A, results

1400 “F T | T T T
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FI1G. 2. Profiles of 8 as predicted by Eq. (2) (Prandtl solution) and

as computed by Eq. (8) (Case B) with the same conditions as stated
in Fig. 1.
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in a perturbation, 8’, on the potential temperature pro-
file. The following relations then exist

h
0=0C, fo 0'dz.

Substituting (10) into (23), and integrating (23), leads
to '

(23)

Q=20Col?, (242)
or
Q = pCy(A0)*/(2B0) (24b)
therefore, " ‘
20;
h=[22
( '30) 25)
with "
A0 =(20;
(20:80) ] 26)
Qs=0/p Cp

Equations (25) and (26) suggest that both /# and Af
are physically functions of By: 4 is inversely pro-
portional to 8,'/? and A is proportional to 8,"/ for a
given Q;. » v

From an energetics point of view, keeping 4 constant
and increasing 8, as discussed in subsection (ii), means
that the related thermal energy, Q, should increase ac-

cording to Eq. (24a). On the other hand, keeping A8

constant and increasing (3, based on Eq. (24b), means
the related thermal energy, Q, should be reduced. That
is the reason for the contradictory results with respect
to By discussed in subsection (ii), i.e., (a) keeping Af
constant and (b) keeping 4 constant. An adequate ap-
proach should, therefore, adopt the thermal energy
source, Q, as the appropriate parameter for the eval-
uation of the dependence of u’ on B,. '
Substituting (25) and (26) into (11), yields

, _Asine (24§
W~ Qs( 3 E)E

27

where £ = z/h.
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FIG. 3. The debendence of upslope flow on £ and Q, with «
= 0.6°, and B, = 3.5 K km™! (Case B and,Case C).
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FIG. 4. The dependence of 4 = fo" u'dz [based on Eq. (30)] on the

background thermal stability 8, with & = 0.6°, K = 100 m? s™' and
O, = 1750 m K (Case B).

Differentiating (27) with respect to £ and setting the
result equal to zero results in

AQ; sin
Ui =~ 0.13 QTO“ , (28)
e ~1- V?i =0.42. (29)

Equations (27) and (28) indicate that the upslope
wind profile (in the £ vertical coordinate) and therefore
Umax are dependent on Q.. They are not, however, de-
pendent on the background atmospheric thermal sta-
bility, Bo. This conclusion is illustrated in Fig. 3, in
which profiles 1 and 2 of upslope flow for Case B are
calculated with a = 0.6° and Ky = 0.05 m s™! from
(27) for any By > 0 with Q; equal 1750 (m K) and 3500
(m K), respectively.

On the other hand, the dependence of the laxer-im-
tegrated momentum of the upslope flow, 4 = [ u'dz,
on the background stability 8 is indicated by the re-
lation:

h 1
A =f u’dz=hj; wdt=SB,"""? (30)

0 : ,
where s was eliminated by using (25). In Eq. (30), S
=(2Q,)'"? fol u'd§,isafunction of O, butisindependent
of B8y. Consequently, Eq. (30) indicates that the layer-
integrated momentum of the upslope flow, 4, for a
given amount of thermal energy, Q;, is inversely pro-
portional to Bo"/2. It suggests that for a given amount
of thermal energy injected at the surface into the PBL,
as (o reduces, a higher efficiency of transformation from
thermal energy into kinetic energy is obtained as shown
in Fig. 4. .

Equation (13) in Case C also indicates that the dis-

tribution of upslope flow, as a function of £, depends
on the thermal energy Q;; however, it is not dependent
on fy. Flow features in this case are shown in Fig. 3,
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TABLE 5. Illustration of the relation of several characteristics of
upslope flow to slope angle (o) and background thermal stability, 8o
(K km™), with Q, = 1750 m K for Cases B and C.

oy (M) h (m)
2] Unax
Case (°) (ms!) Bo=175 By=35 Be=175 Bp=35
B 12 29 600 467 1414 1000
06 1.3 600 467 1414 .1000
C 12 56 518 366 1414 1000
06 28 518 366 1414 1000

by profiles 3 [Q; = 1750 (m K)] and 4 [Q,; = 3750 (m
K)] with @ = 0.6°, and K, = 0.8 m s, for any 8 > 0.
The relationship between A4 and S, for Case C can also
be expressed by Eq. (30).

A comparison of u’ profiles obtained in Cases B and
C (Fig. 3 and Table 5) indicates that the maximum
upslope flow in the profiles corresponding to Case C
(profiles 3 and 4) are about two times larger than those
corresponding to Case B (profiles 1 and 2). This char-
acteristic is caused by the fact that in Case B, where K
is constant with height, the effective friction within the
PBL is larger than that involved with the parabolic X
applied in Case C. Table 5 was computed with the
same Q, and K as used for profiles 1 and 3 in Fig. 3.
Table 5 indicates that (a) the maximum upslope flow
increases as slope angle increases from 0.6° to 1.2° for
both Cases B and C; (b) the height at which the upslope
flow reaches its maximum, A, _, and the depth of up-
slope flow, A, reduce with increasing (3, for both Cases
B and C; and (c) the value of 4, in Case B is higher
than that in Case C; however, the . in Case C is
about two times the magnitude of that in Case B. As
a result, a stronger wind shear is obtained in the lower
PBL in Case C. Based on Fig. 3 and Table 5, the dif-
ference in u' profiles in the lower PBL for Cases B and

3000
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C are caused as follows: the value of K in Case B is
constant throughout the PBL, while in Case C, K is
parabolic, leading to a larger ., and stronger wind
shear in the lower part of the PBL. For example, for
Bo=3.5K km™ and Q, = 175 m K the KX values in
Case C are significantly smaller in the lower part of the
PBL with a parabolic profile (Kmax = 200 m? s7') as
compared to the constant K profile (K = 50 m?s™!) in
Case B. Therefore, according to Eq. (1), a stronger wind
shear in Case C is needed in order to reach a friction
force as large as that in Case B, so as to balance the
large buoyancy force near the surface (' is largest near
the surface).

2) NUMERICAL MODEL RESULTS

In order to provide additional insight into the impact
of background atmospheric thermal stability, 8o, on
daytime thermally induced upslope flow, as well as an
evaluation of the analytical analyses, Case C1 (com-
mencing following sunrise) has been designed as out-
lined in Table 2.

Case C| reflects a typical subtropical summer case;
the soil moisture availability is 0.05 (indicating rela-
tively dry soil), where the percent of incoming solar
radiation converted to sensible heat flux is about 40
percent during the noon hours (e.g., Segal et al., 1986).
Figure 5 illustrates the upslope flow in the simulated
vertical cross section for 1400 LST (when the flow in-
tensity is around its daytime peak) and shows a similar
upslope flow intensity for 8y values of 2 K km™' and
6 K km™!. Several typical features of the simulated
upslope circulation in this case are provided in Table
6 for 1000, 1200 and 1400 LST. The numerical model
results shown in Table 6 indicate that as f, increases,
the potential temperature at the first model level, 6(1),
also increases. The depth of upslope flow, A4,, which
defines the height at which the upslope wind becomes
zero, is similar to the height of the PBL 4,, which tops

§

g

1000 | /7

0 AdAA A A s ANl d)

25km

FIG. 5. Vertical cross section presenting the numerical model simulated #' for Case C1 at 1400 LST: (a) 8o = 2 K km™; (b) 8, = 6 K km™".
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TABLE 6. Values of several pertinent parameters at the middle of the Slope and for the simulated cross section (see text for their definition)

as obtained from the two-dimensional simulation of Case C1. See Fig. 5 for illustration of the simulated domain terrain.

()

Hour Bo Ulnax hy hy Af A= [bvudz H, Uk,
(LST) (K km™) (ms™) (m) (mi) (K) K) . (m?s7") (Wm™) (ms™)
1000 2 3.2 1050 900 304.0 23 1667 284 34
6 35 600 500° 307.0 4.0 1112 269 3.7
1200 2 5.2 1750 1500 305.6 2.3 4293 354 54
6 4.6 1050 900 309.3 34 2329 324 5.2
1400 2 5.2 2500 2000 306.6 2.1 4943 307 5.8
6 5.5 1350 1200 310.9 3.0 3271 - 278 6.1

the layer in which 96/0z <
H;,, is nearly equal for 8 = 2 K km™! and 6 K km”',
with the depth of upslope flow much larger when B,
=2 K km™' than when 8, = 6 K km™'. According to
]:q (25), the height of the PBL with ﬁo =2 K km™!
should be about 1.7 times that with 8, = 6 K km ™" for
the same Q;, as closely obtained in the numerically
simulated cases. The maximum upslope wind com-
puted at the middle of the slope, up.y, is also nearly
constant while changing 8y, in agreement with the
conclusion suggested by the analytical solutions pre-
sented previously in this paper.

The layer-integrated upslope momentum, A, for
(Case Cl decreases with increasing SB; this feature is
also in agreement with the analytical solutions. The
values of Ad [the difference between the potential tem-
perature at the first level, 6(1), at the middle of the
slope and the corresponding potential temperature at
the same elevation in the free atmosphere] represent
the intensity of buoyancy. Values in Table 6 show its
daytime intensification. Values of u*,, (the maximum
upslope wind within the simulated cross section) are
also presented in Table 6 and show a similarity in mag-
nitude to #5,.x computed at the middle of the slope.

Figure 6 presents the wind profiles above the middle
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JFIG. 6. Numerical model simulated vertical profiles of ¥’ (¢ = z/h)
at the middle of the slope at 1400 LST (Case Cl)..

0. The sensible heat flux, |

of the slope at 1400 LST in Case C1. It shows that there
is almost no difference in the ' profiles computed for
Bo =2 K km™ and B, = 6 K km™'. The numerical
results support the analytical results [Eqgs. (13) and (27)]
that the upslope flow intensity is unaffected by changes
in background thermodynamic stability, S,.

Additional general evaluations of the dependence of
upslope intensity on background thermal stability are
presented in subsection 4c.

b. Thermally induced upslope dependency on slope
Steepness

1) ANALYTICAL RESULTS

Computed wind speeds derived for Case A (shown
in Fig. 1) and for Case B (shown in Fig. 7), as well as
solutions for Case C [glven by Eq. (13)], all suggest that
the upslope flow intensity is proportional to sina. Table
1 (for Case A) and Table 5 (for Cases B and C) quan-

“titatively illustrate this relation. This relation between

the intensity of the upslope flow and the slope steepness
is different from the Prandtl solution, which indicates
that u},.x does not change with terrain steepness (as
can be shown analytically and as illustrated in Ta-
ble 1).

L} T
< | aso06°
N 2 a=12°
o8 - N\ ’ -

0.6~
04

0.2 7/ —

u(m/s)

FIG. 7. Rlustration of the relation of upslope flow to terrain
slope angle based on Case B with 8, = 3.5 K km™".
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In the analytical derivations it was assumed that the
depth of upslope flow is dependent on 8, and A#f [ac-
cording to Eq. (10)] or Q; [according to Eq. (25)], but
is independent of slope steepness. This assumption is
supported by the numerical model results presented in
this study.

2) NUMERICAL MODEL RESULTS

Case C2 was designed to investigate the impact of
slope steepness on upslope flow intensity. The hori-
zontal extent of the slope was 50 km, while the slope
steepness was changed within the range 0.23°, 0.57°,
1.15° and 2.30° corresponding, respectively, to a
steepness of Ys0, Yi00, Yso and Ys. The characteristics
of the modeling results are listed in Table 7.

The numerical modeling results for 1400 LST show
that the daytime thermally induced slope circulation
intensifies when the terrain slope becomes steeper, as
shown in Fig. 8 (and Fig. 5b) as well as in Fig. 9. For
example, the upslope flow intensity with o = 2.3° (tga
= (0.04) is 3.3 times stronger than with o = 0.23° (1ga
= 0.004). The #ma in Fig. 9 and Table 7 and u.«
values in Fig. 8 and Table 7 indicate that by doubling
the terrain slope, their values increase in the range of
about 20-90 percent as compared with about 100 per-
cent for the analytical solutions. The magnitude of the
increase in umax caused by a doubling of the slope is
larger when the slope steepness is smaller. It appears
from Table 7 and Fig. 9 that the depth of upslope flow,
h, is independent of the slope steepness. These nu-
merical model results are in agreement with the results
computed by the analytical solutions in the present
study, but are in disagreement with those of Prandtl
in which u1,.«x does not change with terrain slope and
the depth of upslope flow increases with decreasing
slope steepness.

Additional insight into the sensitivity of upslope in-
duced thermal flow to the slope steepness is provided

Z.J. YE, M. SEGAL AND R. A. PIELKE
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for a ridge case simulation (Case C3). A 2-D ridge with
a base width of 100 km and top heights at 250, 500,
1000 and 2000 m (corresponding to « = 0.29°, 0.57°,
1.15° and 2.30°) were simulated for the same back-
ground conditions as in Case C2. In these cases, the
dependence of the upslope flow intensity on slope
steepness is stronger as compared to the cases in. C2,
since the horizontal expansion of the thermal circu-
lation is relatively confined and upslope flow on both
sides of the ridge focuses the horizontal scale of the
‘circulation. In C2, circulations penetrated up onto the
plateau (e.g., see Atkinson, 1981; Mannouji, 1982, for
the characteristics of this plateau breeze) where the ex-
tent of the penetration was related directly to the up-
slope flow intensity, i.e., the slope steepness. As a result,
in C2 for the steep slope simulations, the flow intensity
dependence on sina was less pronounced. Figure 10
illustrates the wind speed of the developed flow by 1400
LST, at the middle of the ridge slopes. Comparing to
the corresponding profiles obtained in Case 2 (Fig. 9),
a sharper change of the speed with slope angle is sim-
ulated for the whole range of the specified steepness.
Also the flow speed closely relates linearly to sina as
suggested by the analytical solution.

Further numerical modeling investigations of ther-
mally induced upslope dependency on slope steepness
are provided in subsection 4c.

¢. Time required to reach steady state
1) ANALYTICAL EVALUATION

Substituting Eq. (10) into Eq. (1), assuming K
= Kph, making the approximation for 4 and A#d related
to the sensible heat flux, H;, as

¢ 2
J‘Hsdt=lﬁoh2=£
(i 2

260 (31)

TABLE 7. Values of several pertinent parameters at the middle of the slope and for the simulated cross section (see text for their definition)
as obtained from the two-dimensional simulation of Case C2. See Figs. 5b and 8 for illustration of the simulated domain terrain.

Slope angle
Hour a U hy h, (1)) A A= [bu'dz H, ut..
(LST) @ (m) (m) (m) (K) (K) (m?s™") (Wm™) (ms™)
1000 2.30 4.4 600 500 309.1 3.5 1448 280 5.0
1.15 35 600 500 307.1 4.0 1112 280 3.7
0.57 2.1 600 500 305.8 2.5 639 250 2.1
0.23 0.9 600 500 304.8 1.3 247 250 0.9
1200 2.30 5.3 1050 900 310.9 5.2 2426 350 6.8
1.15 4.6 1050 900 309.3 34 2329 350 5.2
0.57 3.2 1050 900 308.5 2.6 1342 300 34
0.23 1.5 1050 900 307.6 1.6 801 290 1.5
1400 2.30 6.2 1350 1200 312.1 4.3 3350 300 7.5
1.15 5.5 1350 1200 310.9 3.0 3271 300 6.1
0.57 3.8 1350 1200 310.1 2.2 2251 260 43
0.23 1.9 . 1350 1200 309.3 1.4 1171 250 20
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yields )
ou o‘u
—=B—+ 2
A o B e | (32)
with the specification:
H;= H, sinwt (33)
where
WY [
[v]
= 4
A {[112N\(HoBo/w)*(1 — £) sina sin(w?/2)} (34)
Ko (35)

" {4(Ho/o)N(1 — £) sina sinX(wt/2)}’

» Hy provides the value of H, at noon and [f] is a time
scale for achieving near steady state with the upslope
wind speed scale [¢'].

It is possible to evaluate the physical condmons that

* are involved with a near steady state of upslope flows
from Eq. (32). This relation suggests that the steady-
state situation is achieved when

Adu/dt =~ 107" min[Bd*u/dt2, 1].

For near steady state, B is evaluated from Eq. (35) as
on the order of 10'I (assuming typical values of Hj
=03Kms 5 A=33X102ms?K ;K =0.1m
s E=0.5; /30 =35X 107 Km™). Therefore based
on Eq (34), when «a and g, decrease, the time scale [¢]
needed for establishing a steady-state flow is longer.
Referring to the slope steepness range involved with
the simulations presented in subsection 4b, [7] is esti-
mated to be about 5 h with a = 2.3° (e.g., sina = 0.04,
reflecting the steep slope case in the model simulations)
and [¥'] = 6 m s™!, while [7] is about 11 h with «
=0.23° (e.g., sina = 0.004, reflecting the shallow slope
case in the model simulation) and [#'] = 2 m s™'. Note
that [u'] values were approximated based on the nu-
merical model simulations presented in subsection 4b.

2) NUMERICAL MODEL EVALUATIONS

Simulations analogous to those described for Case
C1 were carried out for combinations of various values
of 8o and « in order to examine the temporal variations
of the upslope wind component (#max) at the middle
of the slope (Fig. 11). The followmg results are indi-
eated

(a) In agreement with the analytical evaluations, a
closely’ steady-state solution is obtained most rapidly
with the steeper slopes, as shown in Fig. 11. With a
slope angle of & = 0.23°, a well-established steady-state
solution is not obtained (Fig. 11a).

(b) In general, the tendency to establish steady-state
upslope flow during the earlier hours of the day is less
pronounced when the 8, values tend toward neutral.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 44, No. 22

3000 -1
+ () 4
asoo0 P <
o
w0 1 //’\\ /\/ h
/o) 1
——
E 1500 \o R d
£ — 7 ‘
m ""'ITYT‘T""'""'l""’"\"l""'l""'—r
/
(b) A o
2500 | // - \I -
ey
2000 [ N // 4
[ I ,'//
rd 4
- \ A !_/// QO
E 150 | o\’\y ]
N .
1 - p
000 o
500
]
3000 \GABA BRI R SRRAS S
 (c)
2500 F //‘ ® g
b //
. i
2000 | (%
E 1500 | -
™ 0
1000 P ~
500 4
Addddisaaaaaasid
o L —
25km

FIG. 8. Vertical cross section presenting the numerical model sim-
ulated u' for several selected slope angles: (a) 0.23°, (b) 0.57°, (c)
2.3° with 8o = 6 K km™" at 1400 LST (Case C2).

(c) Further support is provided to the general in-
dependence of the intensity of the upslope flow on 3,
(even when the upslope flow is changing with time).
This independence, however, is less valid when 8, tends

toward neutral (6, < 1 K km“)

5. Conclusion

The present study investigated the impact of back- -

. ground atmospheric thermal stability and slope steep-
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F1G. 9. Numerical model simulated vertical profiles of u’ at the
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function of sina is presented.

ness on the daytime thermally induced upslbpe flow
(assuming negligible synoptic flow). Slopes with a
steepness of less than 5°, which are typical of meso-8
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F1G. 10. Numerical model simulated vertical profiles of u’ at the
middle of a ridge slope (see text for definition of the selected ridges
aspect ratio) at 1400 LST (Case C3). In the inset, the change of
Umax at the middle of the slope as a function of sin« is presented.
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domains and which satisfy the linear model constraints,
were considered. Analytical solutions, including several
physical refinements, were compared to the original
Prandtl solution and used to develop further insight
into the understanding of this thermally induced flow.
Numerical simulations were carried out and contrasted
with the analytical solutions.
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. The major conclusions of those evaluations are as
follows:

(i) The daytime thermally induced upslope flow as
a function of the nondimensional height, £, is depen-
dent on the amount of heat energy, Q;, injected at the
surface into the PBL, and on the terrain slope, . How-
ever, the upslope flow intensity is nearly independent
of the background atmospheric thermal stability, 3,.

(ii) According to the analytical evaluation presented
in this study, the intensity of upslope flow (a) increases
linearly with the increase in Q; and (b) increases linearly
with respect to sina. The depth of upslope flow in-
creases when Q; increases and/or By decreases. A de-
tailed quantitative evaluation of these relations is pro-
vided by the present study.

(iii) For a given amount of thermal energy, Q;, the
efficiency of conversion from thermal energy into ki-
netic energy (represented by the layer-integrated mo-
mentum of the upslope flow) increases as the back-
ground atmospheric thermal stability tends toward
neutral and/or the terrain steepness increases.
~ (iv) General agreement between the analytical and
the numerical model evaluations for the cases simu-
lated in the present study suggest that nonlinear ad-
vective effects do not alter conclusions (i) to (iii) listed
above.
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APPENDIX A
Derivation of the Solution in Case A

For the steady state, the governing equations of slope
winds are as follows:

a !
9k, %%\ \sinat'=0 (A1)
dz " 9z
a0’ ]
?—Kh— — Bo sinau’'=0. (A2)
dz 0z
The boundary conditions are
u'=0, =48, z=2z (A3)
uw=0'=0, z=h (Ad)

where A = g/8, Bo = 86,/9z, h is the height of the PBL,
7o is the roughness of the slope surface, and K,, = K}
= K is assumed. Introducing the nondimensional vari-
ables:

u=u'flu'), 9=0'/[0'],

tE=z/h, K:=K/IK]
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where [u'], ['] and {K] are the scale parameters of #/,
8’ and K, respectively, then (A1) to (A4) can be rewritten
as

;;K Z’; [)‘g[]hzl sina =0 (AS)

2
;E -32— (:;?]‘[;h] inau =0 (A6)
u=0, 0=A6/[0"] at £=£ (A7)
u=0, 9=0 at £=1. (A8)

Let

1= NR sina/[K] (A9)
N=(\Go)"” (A10)
“and W= 8 + iu, then (AS5) to (A8) can be rewritten as
dg (;I;V+mW 0 (Al1)
W=A0/[0'] when £=£ (A12)
W=0 when £=1.° (A13)

Assuming K, = constant, the general solution of (A11)
is :

1/2
W=C_C, exp[(ZK) (i— 1)5]

) 172
+G, exp[—(ZK) (1- i)£]. (A14)

The cbnstahts Cl and C, can be written, through ap-
plying the boundary eonditions (A12) and (A13), as
follows: ~

A 172
= [exp[(zzz) (4—(1+i)g0)]

7 \? )
- exp[(z 1 ) [4+ Eo+i(o— 4)1]]
Ad 7
©= [01< "[(

12
) (1 +i)]

el )
p-enfelge) o) ) ]

-2 exp[(%)m] cos[(%)m(go - 1)] . (AL5)

Finally, ' and 8’ can be written as

, Al Zo— 2\ . (z— 2y , _
=)\ (
u'=>Xx I exp( ] ) sm( 7 )+ Au'  (Al6)
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6= AB exp(zo 1— Z) cos(z—lzo) +AP (A7)

where

A= )\é-o-[exp(zh -z+ zo) Sin(2}1 +z— 320)
PN

/ l

(2h+z—zo) . (2h—z—zo)
—exp| sin
l _ l
_ z+ z}, . (z2— 2
exp( 7 .)sm( T )
- exp(s}z0 — Z) sin(z _l Zo)] (A18)
Ad' = AB[ (Zh z+zo) (2h+z 320)
V4
(2h +z— zo) ( —z- )
—exp ]

+ [exp(z +1 zo) - exp(3 ol z)] cos(z _1 zo)] (A19)

and (A15) can be written as

= exp(z—fo) + exp(——————z(Zh l— ZO))
-2 exp(%) co s(2(zol ))
2K

12
I= (N sina) ’

APPENDIX B

where

Parameterization of Eddy Exchange Coefficient

According to Pielke et al. (1983), the vertical eddy
exchange coefficient K(z) above the surface layer under
unstable conditions assumes the form given by

h—

K(2)= K;,+(h P

Y v nf]

+ 2(Ky, — Kp)/(h— hL)]] (B1)
where

h is the height of the PBL

h;  is the height of the surface layer, assuming 4y
= h/25

K, is the eddy exchange coefficient at the PBL top,
assumed equal to zero

K;, is the eddy exchange coefficient at the top of
the surface layer.

If K, is approximated by
KhL =~ kOu* hL s
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which is the appropriate form if the surface layer is
neutrally stratified), (B1) becomes

e

where £ = z/h, ko is the von Karman constant, 1, is a
friction velocity, and

K ~ Koh(1 — £)? 5‘3 (B2)

Koty

= — *
Ko (096)2 llk()u

(B3)

is defined. .

Equation (B2) indicates that X is proportional to A,
and K is a cubic polynomial of £&. We use K oc & in
CaseBand K oc A£(1 —£)in Case Casan approximation
to (B2).

v APPENDIX C
Derivation of the Solution in Case C

The equations and boundary conditions are as those
of Case B, however, with a parabolic K profile: K
= Kyz(1 — z/h). The equation for #' can be written as

-Q-K 3 = \ sina[Bo(z — zp) — Af] (C1)
dz 0z
u'=0 when z=2z and z=h—-2z. (C2)

The general solution of (Cl1), which is obtained by
integrating (C1), is

,_ Ahsina M z __ﬁo _ h—z
=220 [2 1n(1 h) > hl( - )+c2]
(C3)

where C, and C, are integration constants.
Using the boundary conditions (C2), the constants
C, and G, are expressed as

Bo _ 220 —-h
€= (h ln[(h-zoyzo]) €4
h h—
C,= -@%— [1 - 1n(fihTf°—))] . (C5)

Substituting (C4) and (C5) into (C3) yields the solution
given in Eq. (13).
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