Application of symbolic algebra to the generation of coordinate transformations

P.J. Flatau, R.A. Pielke and W.R. Cotton
Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA

Abstract

In this paper we present tools for automatic generation of generalized (variable and terrain-following) coordinate transformations and its use in numerical models of atmospheric flows. Such methodology should be competitive with the more commonly employed nested grid schemes. We discuss the symbolic (computer) algebra program for analytical calculation of Christoffel symbols, metric tensor and other geometrical objects describing a transformation. An example, related to the numerical modeling of mesoscale flows, is given. This example shows how coupled terrain-following and stretching transformation can be easily created. The possible application of such methodology in numerical modeling of air pollution on cirrus clouds is briefly discussed.

1. Introduction

It is now common in many atmospheric mesoscale models to employ a terrain-following coordinate transformation. Starting with Gal-Chen and Somerville (1975) a number of researchers (Clark, 1977; Tripoli and Cotton, 1982; Pielke and Martin, 1981) used tensor procedures (Christoffel symbols, metric tensor) to describe the topography in this concise, mathematically elegant and simple way. Dutton (1976) and Pielke (1984) attempted to implement the well-known tensor algebra apparatus to the more general class of atmospheric problems namely those which employ variable as well as a terrain-following numerical grid. The variable grid, as opposed to the nested grid approach has not been yet fully exploited (Kitade, 1979). One of the problems is the extensive algebra arising in the calculation of the transformation tensors.

To ease the problem, a symbolic (computer) algebra program has been developed which is capable of easily generating the tensorial quantities important for the successful implementation of general coordinate transformations.

Recently, in atmospheric problems, symbolic algebra was applied in algebraic-extensive calculations (Flatau et al., 1988; Flatau 1985) but this useful computer technique is not well-known in meteorology. The example which we present in this paper is applicable to the numerical modeling of pollutant dispersion in mountainous region but similar algebra is required to obtain high resolution in the upper-troposphere when simulating cirrus clouds. We want to have more resolution in a specific region (e.g., close to the stack) yet at the same time, to use a terrain following coordinate system. In Section 2 we illustrate the application of symbolic algebra to this specific problem.

2. Example: Terrain-Following and Locally Refined Transformation

In setting up a vertical and horizontal grid, grid increments can be kept constant, or allowed to stretch. The advantage of a constant grid is the relative ease of coding such a framework onto a computer as well as allowing a consistent computational treatment. For the simulation of air pollution in the framework of a three-dimensional large eddy simulation (LES) model, (e.g., Deardorff, 1974) one is faced with the need for local grid refinement close to a pollution source (e.g., a stack) yet to retain an adequate representation of large eddies in the atmospheric boundary layer and the dominant topographic features in the area. The need for high spatial resolution locally arises when modeling cirrus clouds imbedded within a large scale flow.

The local refinement can be obtained in the way similar to that proposed by Anthes (1970). The slightly modified Anthes transformation is given by

\[\begin{align*}
 x_1^t &= (C_1 + R_2 C_2)x_1^a \\
 x_2^t &= (C_1 + R_2 C_2)x_2^a
\end{align*} \]

(1)

where

\[R_2 = \left(\frac{x_1^a}{x_{\text{max}}} \right)^2 + \left(\frac{x_2^a}{x_{\text{max}}} \right)^2 \]

(2)

and \(C_1, C_2 \) are constants. Transformation (1) corresponds to coordinate stretching.

For simplicity we present the results in the two dimensional framework but the extension to three dimensions is straightforward. The \((x_1^a, x_2^a) \rightarrow (y_1^a, y_2^a)\) stretching transformation is performed first, followed by the terrain-following transformation defined by

\[\begin{align*}
 x_1^t &= y_1^t \\
 x_2^t &= \sigma (y_1^t, y_2^t) \\
 x_3^t &= h(y_1^t, y_2^t)
\end{align*} \]

(3)

with

\[\sigma = \frac{H - z_0}{H - \frac{z_0}{2}} \]

(4)

In these expressions \(H \) defines the flat top of the model atmosphere, and \(z_0 \) defines the height of topography. For the example, the topographic shape is given by

\[z_0 = \frac{h a^2}{x_1^2 + a^2} \]

(5)

where the mountain half-width is \(a \) and its maximum height is \(h \).

The resulting transformation is presented in Fig. 1. Dots represent the grid points position in the \(z - x \) plane. The mountain shape is clearly seen. To the east of the mountain ridge the grid is locally refined. The constant number of grid points in the vertical for different \(z \)-values cause the top of the model grid to exhibit "folding". In the \((x_1^t, x_2^t)\) space the grid is rectangular with constant grid spacing. The transformation tensors for the \(\sigma \)-transformations are given in Pielke (1984) and are not repeated here. Part of the symbolic algebra program written in REDUCE (Hearn, 1984) is given in the Appendix A. A simple example of output for the spherical coordinates is included in Appendix B. More examples are available in Flatau et al., (1988). Similar capabilities are coded in MACSYMA (Bogen, et al., 1983) and SMP (Wolfram and Cole, 1983). Both transformations (1) and (3) can be treated together and the
Application of symbolic algebra: P. J. Flatau et al

Figure 1: The grid in the z - z plane. The terrain-following transformation is applied and the increased grid resolution can be observed for positive z-values on the ridge slope. Dots indicate grid points after transformation.

resulting Christoffel symbols, metric tensor, etc. can be calculated. For any general coordinate transformation which has a functional form, no matter how complex, the transformation can be calculated using symbolic algebra and stored for subsequent calculations.

3. Conclusions

A procedure is described in which symbolic algebra is applied to a coordinate transformation in order to obtain quick, accurate values for the transformation tensors. While the example presented here was for a stretched-grid in a terrain following coordinate system, the transformation tensors can be pre-calculated for any general coordinate transformation which has a functional form, using symbolic algebra and stored for subsequent calculations.

4. Acknowledgements

We would like to thank Dallas McDonald and Bryan Critchfield for processing the manuscript.

This research was supported by the Electric Power Research Institute Contract No. RP 1630-53, National Science Foundation Grant No. ATM-8616662, and Air Force Office of Scientific Research Grant No. AFOSR-88-0413. Computations were performed on the National Center for Atmospheric Research (NCAR) IBM 4341 computer. NCAR is supported by the National Science Foundation.

5. References

6. Appendix A

The Christoffel symbol (CS1, CS2, CS3) are defined as

\[\Gamma^i_{\mu} = \frac{1}{2} \delta^i_{\mu} \left(\frac{\partial G_{\nu\lambda}}{\partial x^\mu} + \frac{\partial G_{\lambda\nu}}{\partial x^\mu} - \frac{\partial G_{\mu\lambda}}{\partial x^\nu} \right) \]

(See Pielke, 1984, p. 108, Eq. (6.14).)
Application of symbolic algebra: P.J. Flatau et al

PROEDURE TRANSF(XX);
BEGIN;
ARRAY TAUI(3), TAU2(3), TAU3(3);
ARRAY ETA1(3), ETA2(3), ETA3(3);
MATRIX DXDXT(3,3), DXTDX(3,3);
FOR I:=1:3 DO
BEGIN;
TAUI(I):=DF(XX(I),XTT(1));
TAU2(I):=DF(XX(I),XTT(2));
TAU3(I):=DF(XX(I),XTT(3));
DXDXT(I,1):=TAUI(I);
DXDXT(I,2):=TAU2(I);
DXDXT(I,3):=TAU3(I);
END;
WHITE " Tau vectors calculated ";
DXTDX:=TP(DXDXT**(-I)) ;
FOR I:=1:3 DO
BEGIN;
ETAI(I):=DXTDX(I,I);
ETA2(I):=DXTDX(I,2);
ETA3(I):=DXTDX(I,3);
END;
WRITE " Eta vectors calculated ";
MATRIX G(3,3), GI(3,3);
FOR 3:=1:3 DO FOR M:=1:3 DO G(3,3):=FOR.I:=1:3 SUM DF(XX(I),XTT(M))*DF(XX(I),XTT(J));
WRITE " G - metric tensor calculated ";
GI:=TP (GI**(-1)) ;
WHITE " GI- metric tensor calculated ";
GTILDA:=DET(G);
WRITE " De~(G) calculated ";
Calculate G in different way;
MATRIX G1(3,3), GI1(3,3);
FOR 3:=1:3 DO FOR M:=1:3 DO
BEGIN;
CS1:= FOR J:=1:3 SUM GI(N,J)*DF(G(L,J).XTT(H)) ;
CS2:= FOR J:=1:3 SUM GI(N,J)*DF(G(M,J).XTT(L)) ;
CS3:= FOR J:=1:3 SUM GI(N,J)*DF(G(L,M).XTT(J)) ;
CS(N.M.L):=(I/2)*(CS1+CS2-CS3);
END;
WRITE " Christoffel symbols calculated ";
ARRAY VEL(3); VEL(1):=U; VEL(2):=V; VEL(3):=W;
FACTDR U,V,W;
UTI := FOR I:=1:3 SUM TAUI(I)*VEL(I);
VTI := FOR I:=1:3 SUM TAU2(I)*VEL(I);
WTI := FOR I:=1:3 SUM TAU3(I)*VEL(I);
UT2 := FOR I:=1:3 SUM ETAI(I)*VEL(I);
VT2 := FOR I:=1:3 SUM ETA2(I)*VEL(I);
WT2 := FOR I:=1:3 SUM ETA3(I)*VEL(I);
WRITE " end of transformation routine " ;
END;

7. Appendix B

Output from the program provided in Appendix A for the transformation:

\[
\begin{align*}
\theta & \rightarrow r \sin \theta \\
\phi & \rightarrow r \sin \phi \\
\phi & \rightarrow r \cos \phi
\end{align*}
\]

\textbf{EXAMPLES}

\texttt{SPHERICAL COORDINATES *}

\texttt{XX(1):=XTT(3)*SIN(XTT(1))*COS(XTT(2))}
\texttt{XX(2):=XTT(3)*SIN(XTT(1))*SIN(XTT(2))}
\texttt{XX(3):=XTT(3)*COS(XTT(1))}

\texttt{PRINT'THETA,PHI,R')$
\texttt{2 4}
\texttt{GT - DETERMINANT OF METRICS SIN(THETA) *R}
\texttt{C \textbf{================================} }
\texttt{TAU1(1)=COS(THETA)*COS(PHI)*R}
\texttt{TAU1(2)=COS(THETA)*COS(PHI)*R}
\texttt{TAU1(3)=-COS(THETA)*R}
\texttt{TAU2(1)=-SIN(THETA)*SIN(PHI)*R}
\texttt{TAU2(2)=SIN(THETA)*COS(PHI)*R}
\texttt{TAU2(3)=0}
\texttt{TAU3(1)=SIN(THETA)*COS(PHI)}
\texttt{TAU3(2)=SIN(THETA)*SIN(PHI)}
\texttt{TAU3(3)=COS(THETA)}
\texttt{C \textbf{================================} }
\texttt{ETA1(1)=SIN(THETA)*COS(PHI)}
\texttt{ETA1(2)=SIN(THETA)*SIN(PHI)}
\texttt{ETA1(3)=COS(THETA)}
\texttt{ETA2(1)=SIN(THETA)*COS(PHI)}
\texttt{ETA2(2)=SIN(THETA)*SIN(PHI)}
\texttt{ETA2(3)=COS(THETA)}
\texttt{ETA3(1)=SIN(THETA)*COS(PHI)}
\texttt{ETA3(2)=SIN(THETA)*SIN(PHI)}
\texttt{ETA3(3)=COS(THETA)}
\texttt{C \textbf{================================} }
\texttt{UT1:=-(-U*COS(THETA)-V*SIN(THETA))}
\texttt{VT1:=-V*SIN(THETA)}
\texttt{WT1:=U*SIN(THETA)}
\texttt{UT2:=-(-U*COS(THETA)-V*SIN(THETA))}
\texttt{VT2:=V*SIN(THETA)}
\texttt{WT2:=U*SIN(THETA)}

160 Environmental Software, 1988, Vol. 3, No. 4
Application of symbolic algebra: P.J. Flatau et al

\[U \sin(\phi) - V \cos(\phi) \]

\[VT \ CH = U \sin(\theta) \cos(\phi) + V \sin(\phi) \sin(\theta) + W \cos(\theta) \]

\[G \text{ metric tensor (0 elements not printed)} \]

\(G(1,1)\)	\(R\)
\(G(2,2)\)	\(\sin(\theta) \times R\)
\(G(3,3)\)	\(1\)

\[\text{C \ Gamma - Christoffel symbols} \]

\(\Gamma(1,1,3)\)	\(R\)
\(\Gamma(1,2,2)\)	\(- \sin(\theta) \cos(\theta)\)
\(\Gamma(1,3,1)\)	\(\cos(\theta)\)
\(\Gamma(2,1,2)\)	\(\sin(\theta)\)
\(\Gamma(2,2,1)\)	\(\cos(\theta)\)
\(\Gamma(2,2,3)\)	\(\sin(\theta)\)
\(\Gamma(3,1,1)\)	\(- R\)
\(\Gamma(3,2,2)\)	\(- \sin(\theta) \times R\)

Environmental Software, 1988, Vol. 3, No. 4 161