Contents

VOLUME 1

List of Contributors xi

Preface xxv

Abbreviations and Acronyms xxvii

Part 1: Theory, Organization and Scale 1

1. On the Fundamentals of Hydrological Sciences 3
2. The Hydrologic Cycles and Global Circulation 13
3. Hydrologic Concepts of Variability and Scale 23
4. Organization and Process 41
5. Fundamental Hydrologic Equations 59
6. Principles of Hydrological Measurements 75
7. Methods of Analyzing Variability 95
8. Fractals and Similarity Approaches in Hydrology 123
9. Statistical Upscaling and Downscaling in Hydrology 135
10. Concepts of Hydrologic Modeling 155
11. Upscaling and Downscaling – Dynamic Models 165
12. Co-evolution of Climate, Soil and Vegetation 177

Part 2: Hydrometeorology 221

15. Digital Elevation Model Analysis and Geographic Information Systems 239
16. Numerical Flood Simulation 257
17. Hydrological and Environmental Modeling of Transport Processes in Rivers and Estuaries 271
19. Data-driven Modeling and Computational Intelligence Methods in Hydrology 293
20. Artificial Neural Network Concepts in Hydrology 307
21. Rainfall-runoff Modeling Based on Genetic Programming 321
22. Evolutionary Computing in Hydrological Sciences 331
23. Flood Early Warning Systems for Hydrological (sub) Catchments 349
24. Network Distributed Decision Support Systems and the Role of Hydrological Knowledge 365

Part 3: Meteorology and Climatology 379

25. Global Energy and Water Balances 381
26. Weather Patterns and Weather Types 401
27. Storm Systems 413
28. Clouds and Precipitation 423
29. Atmospheric Boundary-Layer Climates and Interactions with the Land Surface 443
30. Topographic Effects on Precipitation 455
31. Models of Clouds, Precipitation and Storms 463
32. Models of Global and Regional Climate 477
33. Human Impacts on Weather and Climate 491
34. Climate Change – Past, Present and Future 507

Part 4: Hydrometeorology 527

35. Rainfall Measurement: Gauges 529
36. Precipitation Measurement: Gauge Deployment 537
37. Rainfall Trend Analysis: Return Period 547
38. Fog as a Hydrologic Input 559
39. Surface Radiation Balance 583
40. Evaporation Measurement 589
41. Evaporation Modeling: Potential 603
42. Transpiration 615
43. Evaporation of Intercepted Rainfall 627
44. Evaporation from Lakes 635
45. Actual Evaporation 647

VOLUME 2

List of Contributors xi

Preface xxv

Abbreviations and Acronyms xxvii
Part 5: Remote Sensing

46 Principles of Radiative Transfer 659
47 Sensor Principles and Remote Sensing Techniques 673
48 Ground-based and Airborne Lidar 697
49 Estimation of Surface Insolation 713
50 Estimation of the Surface Energy Balance 731
51 Spatially Resolved Measurements of Evapotranspiration by Lidar 753
52 Estimation of Surface Temperature and Surface Emissivity 771
53 Estimation of Surface Freeze–Thaw States Using Microwave Sensors 783
54 Estimation of Surface Soil Moisture Using Microwave Sensors 799
55 Estimation of Snow Extent and Snow Properties 811
56 Estimation of Glaciers and Sea-ice Extent and their Properties 831
57 Land-cover Classification and Change Detection 853
58 Characterizing Forest Canopy Structure and Ground Topography Using Lidar 875
59 Estimation of Soil Properties Using Hyperspectral VIS/IR Sensors 887
60 Estimation of River and Water-Body Stage, Width and Gradients Using Radar Altimetry, Interferometric SAR and Laser Altimetry 903
61 Estimation of River Discharge 919
62 Estimation of Suspended Sediment and Algae in Water Bodies 939
63 Estimation of Precipitation Using Ground-based, Active Microwave Sensors 951
64 Satellite-based Estimation of Precipitation Using Microwave Sensors 965
65 Estimation of Water Vapor and Clouds Using Microwave Sensors 981

Part 6: Soils

66 Soil Water Flow at Different Spatial Scales 999
67 Hydrology of Swelling Clay Soils 1011
68 Water Movement in Hydrophobic Soils 1027
69 Solute Transport in Soil at the Core and Field Scale 1041
70 Transpiration and Root Water Uptake 1055
71 Freezing and Thawing Phenomena in Soils 1069
72 Measuring Soil Water Content 1077
73 Soil Water Potential Measurement 1089
74 Soil Hydraulic Properties 1103
75 Determining Soil Hydraulic Properties 1121
76 Models for Indirect Estimation of Soil Hydraulic Properties 1145
77 Inverse Modeling of Soil Hydraulic Properties 1151
78 Models of Water Flow and Solute Transport in the Unsaturated Zone 1171
79 Assessing Uncertainty Propagation Through Physically based Models of Soil Water Flow and Solute Transport 1181

Part 7: Erosion and Sedimentation

80 Erosion and Sediment Transport by Water on Hillslopes 1199
81 Erosion Monitoring 1209
82 Erosion Prediction and Modeling 1221
83 Suspended Sediment Transport – Flocculation and Particle Characteristics 1229
84 Floodplain Sedimentation – Methods, Patterns, and Processes: A Review with Examples from the Lower Rhine, the Netherlands 1241
85 Sediment Yields and Sediment Budgets 1283
86 Measuring Sediment Loads, Yields, and Source Tracing 1305
87 Sediment Yield Prediction and Modeling 1315
88 Reservoir Sedimentation 1327
89 On the Worldwide Riverine Transport of Sediment – Associated Contaminants to the Ocean 1341
90 Lake Sediments as Records of Past Catchment Response 1359

VOLUME 3

List of Contributors xi

Preface xxv

Abbreviations and Acronyms xxvii

Part 8: Water Quality and Biogeochemistry

91 Water Quality 1373
92 Water Quality Monitoring 1387
93 Effects of Human Activities on Water Quality 1409
94 Point and NonPoint Source Pollution 1427
95 Acidic Deposition: Sources and Effects 1441
96 Nutrient Cycling 1459
97 Urban Water Quality 1479
98 Pathogens 1493
99 Salinization 1505
100 Water Quality Modeling 1525
Part 9: Ecological and Hydrological Interactions 1533

- 101 Ecosystem Processes 1535
- 102 Trophic Dynamics 1557
- 103 Terrestrial Ecosystems 1575
- 104 Satellite-Based Analysis of Ecological Controls for Land-Surface Evaporation Resistance 1589
- 105 Microbial Transport in the Subsurface 1603
- 106 Groundwater Microbial Communities 1627
- 107 Natural and Constructed Wetlands 1639
- 108 Lake Ecosystems (Stratification and Seasonal Mixing Processes, Pelagic and Benthic Coupling) 1657
- 109 Reservoirs 1675
- 110 Paleolimnology and Paleohydrology 1681

Part 10: Rainfall-runoff Processes 1705

- 111 Rainfall Excess Overland Flow 1707
- 112 Subsurface Stormflow 1719
- 113 Hyporheic Exchange Flows 1733
- 114 Snowmelt Runoff Generation 1741
- 115 Landscape Element Contributions to Storm Runoff 1751
- 116 Isotope Hydrograph Separation of Runoff Sources 1763
- 117 Land Use and Land Cover Effects on Runoff Processes: Urban and Suburban Development 1775
- 118 Land Use and Land Cover Effects on Runoff Processes: Agricultural Effects 1805
- 119 Land Use and Landcover Effects on Runoff Processes: Forest Harvesting and Road Construction 1813
- 120 Land Use and Land Cover Effects on Runoff Processes: Fire 1831
- 121 Intersite Comparisons of Rainfall-runoff Processes 1839

Part 11: Rainfall-runoff Modeling 1855

- 122 Rainfall-runoff Modeling: Introduction 1857
- 123 Rainfall-runoff Models for Real-time Forecasting 1869
- 124 Flood Routing and Inundation Prediction 1897
- 125 Rainfall-runoff Modeling for Flood Frequency Estimation 1923
- 126 Modeling Recession Curves and Low Streamflows 1955
- 127 Rainfall-runoff Modeling: Distributed Models 1967
- 128 Rainfall-runoff modeling: Transfer Function Models 1985
- 130 Fuzzy Sets in Rainfall/Runoff Modeling 2007
- 131 Model Calibration and Uncertainty Estimation 2015
- 132 Rainfall-runoff Modeling for Assessing Impacts of Climate and Land Use Change 2033
- 133 Rainfall-runoff Modeling of Ungauged Catchments 2061
- 134 Downward Approach to Hydrological Model Development 2081

VOLUME 4

- List of Contributors xi
- Preface xxv
- Abbreviations and Acronyms xxvii

Part 12: Open-channel Flow 2099

- 135 Open Channel Flow – Introduction 2101
- 136 Hydrodynamic Considerations 2105
- 137 Uniform Flow 2111
- 138 Unsteady Flow 2121
- 139 Numerical Modeling of Unsteady Flows in Rivers 2129
- 140 Transport of Sediments 2149
- 141 Computer Modeling of Overbank Flows 2163
- 142 Debris Flow 2173
- 143 Mountain Streams 2187
- 144 Regulated Lowland Rivers 2199

Part 13: Groundwater 2213

- 145 Groundwater as an Element in the Hydrological Cycle 2215
- 146 Aquifer Recharge 2229
- 147 Characterization of Porous and Fractured Media 2247
- 148 Aquifer Characterization by Geophysical Methods 2265
- 149 Hydrodynamics of Groundwater 2285
- 150 Unsaturated Zone Flow Processes 2299
- 151 Hydraulics of Wells and Well Testing 2323
- 152 Modeling Solute Transport Phenomena 2341
- 153 Groundwater Pollution and Remediation 2355
- 154 Stochastic Modeling of Flow and Transport in Porous and Fractured Media 2367
- 155 Numerical Models of Groundwater Flow and Transport 2376
- 156 Inverse Methods for Parameter Estimations 2415
- 157 Sea Water Intrusion Into Coastal Aquifers 2431
- 158 Anthropogenic Land Subsidence 2443
CONTENTS

<table>
<thead>
<tr>
<th>Part 14: Snow and Glacier Hydrology</th>
<th>2461</th>
</tr>
</thead>
<tbody>
<tr>
<td>159 Snow Cover</td>
<td>2463</td>
</tr>
<tr>
<td>160 Energy Balance and Thermophysical Processes in Snowpacks</td>
<td>2475</td>
</tr>
<tr>
<td>161 Water Flow Through Snow and Firn</td>
<td>2491</td>
</tr>
<tr>
<td>162 Hydrology of Snowcovered Basins</td>
<td>2505</td>
</tr>
<tr>
<td>163 Hydrochemical Processes in Snow-covered Basins</td>
<td>2525</td>
</tr>
<tr>
<td>164 Role of Glaciers and Ice Sheets in Climate and the Global Water Cycle</td>
<td>2539</td>
</tr>
<tr>
<td>165 Mass and Energy Balances of Glaciers and Ice Sheets</td>
<td>2555</td>
</tr>
<tr>
<td>166 Surface and Englacial Drainage of Glaciers and Ice Sheets</td>
<td>2575</td>
</tr>
<tr>
<td>167 Subglacial Drainage</td>
<td>2587</td>
</tr>
<tr>
<td>168 Hydrology of Glacierized Basins</td>
<td>2601</td>
</tr>
<tr>
<td>169 Sediment and Solute Transport in Glacial Meltwater Streams</td>
<td>2633</td>
</tr>
<tr>
<td>170 Modeling Glacier Hydrology</td>
<td>2647</td>
</tr>
<tr>
<td>171 River-Ice Hydrology</td>
<td>2657</td>
</tr>
<tr>
<td>172 Permafrost Hydrology</td>
<td>2679</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 15: Global Hydrology</th>
<th>2695</th>
</tr>
</thead>
<tbody>
<tr>
<td>173 Global Water Cycle (Fundamental, Theory, Mechanisms)</td>
<td>2697</td>
</tr>
<tr>
<td>174 Global Water Budgets – Fundamental Theory and Mechanisms</td>
<td>2713</td>
</tr>
<tr>
<td>175 Observations of the Global Water Cycle – Global Monitoring Networks</td>
<td>2719</td>
</tr>
<tr>
<td>176 Observations of the Global Water Cycle – Satellites</td>
<td>2733</td>
</tr>
<tr>
<td>177 The Role of Large-Scale Field Experiments in Water and Energy Balance Studies</td>
<td>2753</td>
</tr>
<tr>
<td>178 Modeling of the Global Water Cycle: Numerical Models (General Circulation Models)</td>
<td>2761</td>
</tr>
<tr>
<td>179 Modeling of the Global Water Cycle – Analytical Models</td>
<td>2777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 16: Land Use and Water Management</th>
<th>2877</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 Short-Term Predictions (Weather Forecasting Purposes)</td>
<td>2791</td>
</tr>
<tr>
<td>181 Long-Term Predictions (Climate Simulation and Analysis)</td>
<td>2813</td>
</tr>
<tr>
<td>182 The Hydrological Cycle in Atmospheric Reanalysis</td>
<td>2831</td>
</tr>
<tr>
<td>183 Teleconnections in the Earth System</td>
<td>2849</td>
</tr>
<tr>
<td>184 Global River Carbon Biogeochemistry</td>
<td>2863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 17: Climate Change</th>
<th>3013</th>
</tr>
</thead>
<tbody>
<tr>
<td>195 Acceleration of the Global Hydrologic Cycle</td>
<td>3015</td>
</tr>
<tr>
<td>196 The Role of Water Vapor and Clouds in the Climate System</td>
<td>3029</td>
</tr>
<tr>
<td>197 Observed Trends in Hydrologic Cycle Components</td>
<td>3035</td>
</tr>
<tr>
<td>198 Role and Importance of Cryospheric Processes in Climate System</td>
<td>3045</td>
</tr>
<tr>
<td>199 Role and Importance of Paleohydrology in the Study of Climate Change and Variability</td>
<td>3051</td>
</tr>
<tr>
<td>200 Changes in Regional Hydroclimatology and Water Resources on Seasonal to Interannual and Decade-to-Century Timescales</td>
<td>3073</td>
</tr>
<tr>
<td>201 Land-Atmosphere Models for Water and Energy Cycle Studies</td>
<td>3089</td>
</tr>
<tr>
<td>202 Use of Climate Information in Water Resources Management</td>
<td>3103</td>
</tr>
<tr>
<td>203 A Guide to International Hydrologic Science Programs</td>
<td>3119</td>
</tr>
</tbody>
</table>

| Subject Index | 3145 |