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1. INTRODUCTION

Much interest is currently focused on
inadvertent anthropogenic climate change (NRC,
2005), with surface temperature being one of the
main metrics used to measure this change.
Surface temperatures are generally estimated to
have increased by 0.3 - 0.6 °C over the past
century (IPCC, 2001). Surface temperature data
are useful both for the length of record and since
the surface is where humans conduct most of their
daily activities (Hurrell et al., 2000). Air
temperature by itself, however, may only be a
partial metric of warming or cooling (Pielke et al.,
2004). We propose using moist enthalpy, which
accounts not only for surface air temperature but
also for heat content associated with atmospheric
moisture. The moist enthalpy at any given site is
related to the site’s surface energy balance, which
in turn depends on microclimate. Moist enthalpy is
given by

H=C pT +Lg, (1)

where C, is the specific heat of air at constant
pressure, T is the measured air temperature, L is
the latent heat of vaporization, and q is the specific
humidity. Specific humidity can be calculated from
measurements of relative humidity, dewpoint
temperature or wet bulb temperature (Davey,
2005).

2. DATA AND METHODS

Moist enthalpy can be represented by effective
temperature Tg = H/C,,. We look at 1982-1997
trends in T and Tg for surface sites in the eastern
United States (Figure 1),
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Figure 1. Locations of surface observation sites

using the International Surface Weather
Observations (ISWO) dataset (NCDC, 1998). The
ISWO dataset has undergone extensive quality
control and consists of observations taken every
three hours. No homogeneity adjustments had
been made to this data, however, so an attempt
was made to correct for documented ASOS
(Automated Surface Observing System) and
AWOS (Automated Weather Observing System)
transitions. For each site, annual averages of T
and TE were computed for the year before and the
year after the transition date. These annual
averages were then differenced to compute the
correction factor, which was applied to the original
data. Other discontinuities are likely to exist but
were not addressable in this work since data
histories are not yet summarized efficiently. This
additional, very substantial work should be a high
priority for follow-on studies.

Monthly means of temperature (T), dewpoint
temperature (Ty), station elevation (z), and sea
level pressure (p,) were computed for each ISWO
station. The actual monthly mean pressure was
estimated as

7h

P=pe’", )
where z is station elevation and h is the scale
height (h = 8 km). Once p is known, the monthly
mean specific humidity (q) and the mean
equivalent temperature (Tg) were calculated as in
Davey (2005).
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We then constructed 1982-1997 time series of
each variable for each month. The 1982-1997
trend was estimated using a basic linear
regression model

y=px+¢, (3)
where B is the trend and ¢ is the error. The ratio of

the trend estimate, b, to the standard error of the
trend estimate, SE(b), given by
7 =b/SE(D), (4)

is distributed as Student’s t and was used to
determine whether or not an estimated trend b is
significantly different from zero. This was done by
comparing T to a specified significance level a.

With climate variables, autocorrelation must be
accounted for. If it is assumed that the observation
errors are independent of each other and normally
distributed around zero, this will tend to
exaggerate the overall error. The error term for
each observation, g, must be replaced with the
term

Vi =&~ Z¢ivt—i )
i=1

which accounts for all autocorrelations up to lag m.
The vector @ = (@y4,...,0n) is the vector of
autoregressive parameters while v = (v4,...,vp) is
the error vector.

The Yule-Walker (YW) method (Gallant and
Goebel, 1976) is a commonly used estimation
method used for the autoregressive error model
and has been used here. This method alternates
between estimating the actual trend value, 8,
using generalized least squares (GLS), and
estimating the autoregressive parameters ¢
applied to the sample autocorrelation function,
using the YW equations

Rp, , =-r. (6)
The current estimation of the autoregressive
parameters is given by Qeg, I = (r4,...,Im) is the
vector of sample autocorrelations covering lags 1
through m, and R is the Toeplitz matrix, the i,jth
element of which is r;. Once the best estimate for
the actual trend B is obtained, a t-ratio (4) is then
computed for the trend estimate to determine
whether or not this estimate is significantly
different from zero.

Trend estimates were computed for only those
time series having at least 10 available data points
(years) and the trend estimates accounted for
autocorrelations covering up to four years (i.e. lag-
4). This choice for the maximum lag interval was
intended to remove most interannual influences.
Comparisons of the T and Tg trend estimates were
done annually (i.e. including all observations

throughout the year) and seasonally (i.e. January-
March, April-June, etc.) for the entire surface
dataset. Similar comparisons were done for the
subsets of the T and Tg trends that were
significant at the 90%, 95% and 99% significance
levels. Finally, the variability of both T and Tg
trends as a function of land use/land cover was
examined, using land-cover classes (Table 1) in
the National Land Cover Dataset (Vogelmann et
al. 2001).

Land
Cover
Class

Description

Deciduous Forest
Evergreen Forest
Mixed Forest
Grassland
Shrubland
Row Crops
Small Grains
Pasture/Hay
Urban
Water
Other - ice/snow, bare
surfaces, wetlands,
orchards
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Table 1. Land cover classes from the National
Land Cover Dataset (NLCD — Vogelmann et al.,
2001).

There are a wide variety of microclimates
encountered at surface weather stations around
the United States (Davey and Pielke, 2005). The
land cover of a surface observation site is a
primary factor in describing that site’s microclimate
(Pielke et al., 2000; Kalnay and Cai, 2003). The
predominant land-cover category for each station
was determined by finding which land cover has
the largest proportion of cells in a 3-km X 3-km
area (9 grid cells, or 9 km?) centered on the station
of interest.

3. TEMPERATURE VS. EQUIVALENT
TEMPERATURE

3.1. Annual and seasonal patterns

Annually, when the trend estimates of all
stations are averaged together, the T trends are
cooler than the Te trends. The difference between
the T and Tg trends is significant at >99%. This
relationship continues when one only averages



over those trends which are significantly different
from zero.

Seasonally, the averaged trends for Tg show
more warming than T from the winter through the
summer, while they show less warming than T
trends during the fall. When the comparisons are
narrowed to look only at those individual trends
that are significantly different from zero at a
specified significance level, these differences
between the T and T trends remain significant at
over 99%.

3.2. Land use/land cover influences

On an annual basis, the difference between the
T and Tg trends is insignificant for forests. Tg
trends are significantly cooler for agricultural sites,
while they are significantly warmer for grasslands,
shrublands, urban areas, and water areas. The
corresponding annually-averaged trends in
specific humidity indicate that for those sites
where q has decreased with time, the T trends
are cooler than the T trends. The opposite is true
for those land-cover classes where q has
increased over time.

During the winter months, the only land-cover
classes showing differences between the Tg and T
trends that are significant above 90% are the
shrubland sites, the urban sites, and the water
sites. The sample sizes for the shrubland and
water averages are small, however. The spring
differences between the averaged Tg and T trends
are significant (Tg trends significantly more
warming than T trends) for shrubland sites, sites
with small-grain agriculture, and water sites; yet all
of these averages suffer from small sample sizes.
For the summer months, grasslands and
shrublands generally indicate that the trends for Tg
are warmer than the T trends. The cooling trends
for Tg are significantly cooler than the T trends
during the fall months.

4. DISCUSSION AND CONCLUSIONS

To completely understand surface
warming/cooling trends, we must better
understand the surface energy budget and its role
in determining surface heating trends. Based on
existing problems with documentation of surface
station microclimates and the complex land-
atmosphere interactions that influence the surface
energy budgets at these sites, temperature by
itself is not sufficient for monitoring heating trends.
We have attempted to show that, for the
monitoring of surface trends, moist enthalpy, or
equivalent temperature, is a more appropriate

metric than air temperature. Equivalent
temperature directly accounts not only for dry air
temperature (sensible heating) trends but also
trends in heating driven by changes of surface and
atmospheric moisture. Moist heating effects are
implicitly included in air temperature, but air
temperature, by itself, is not total heat content.

The overall results from this study indicate that
annually, the equivalent temperature trends are
warmer than the temperature trends. This is also
observed in the spring and summer months,
during which vegetation transpiration is at a
maximum. As Pielke et al. (2004) have shown,
outside of the growing season, equivalent
temperature and temperature values are very
similar to each other. It is during the growing
season that the differences between the two
quantities become most apparent. Equivalent
temperature does, in fact, appear to be more
sensitive than air temperature alone to annual
variations in vegetation and other land surface
characteristics. This finding also is generally borne
out in the seasonal variations in temperature and
equivalent temperature heating trends. Equivalent
temperatures are useful for diagnosing spatial
variations in heating trends as a function of land
cover and may help resolve reported
discrepancies between tropospheric and surface
heating trends (Hansen et al., 1995; Hurrell and
Trenberth, 1996; Bengtsson et al., 1999). As the
science community continues exploring alternative
ways to measuring heating trends and strive to
further understand land-atmosphere interactions,
particularly with respect to the surface energy
budget, we can expect substantial improvements
in our understanding of surface heating trends.
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