Chaos, Strange Attractors,
and Weather

A. A. Tsonis and
J. B. Elsner
University of Wisconsin~Milwaukee,

Department of Geosciences,
Milwaukee, W1 53201

Abstract

Some of the basic principles of the theory of dynamical systems
are presented, introducing the reader to the concepts of chaos
theory and strange attractors and their implications in meteorology.
New numerical technigues to analyze weather data according to
the above theory are also presented.

1. Introduction

Simplicity and regularity are associated with predict-
ability. For example, because the orbit of the earth is
simple and regular we can always predict when as-
tronomical winter will come. On the other hand,
complexity and irregularity are almost synonymous
with unpredictability. The atmosphere, being so
complex and irregular, is rather unpredictable.

Those who try to explain the world we live in al-
ways hoped that in the realm of the complexity and
irregularity observed in nature, simplicity would be
found behind everything, and finally unpredictable
events would become predictable. That complexity
and irregularity exist in nature is obvious. We only
need to look around us to realize that practically
everything is random in appearance. Or is it? Clouds,
like many other structures in nature, come in an in-
finite number of shapes. Every cloud is different, yet
everybody will recognize a cloud. Clouds, though
complex and irregular, must on the whaole possess a
uniqueness that distinguishes them from other struc-
tures in nature. The question remains: is their irreg-
ularity completely random or is there some order
behind their irregularity?

Over the last decades physicists, astronomers, bi-
ologists, and scientists from many other disciplines
have developed a new way of looking at complexity
in nature, This way has been termed chaos theory.

Chaos theory, which mathematically defines ran-
domness generated by simple deterministic dynami-
cal systems, allows us to see order in processes that
were thought to be completely random. (Apparently,
the founders of chaos theory had a very good sense
of humor, since chaos is the Greek word for the
complete absence of order.) It is the purpose of this
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paper to introduce the reader to some chaos theory
concepts and some implications of chaos theory in
weather and climate.

2. Simple examples and definitions
from the theory of dynamical
systems

In the preceding paragraph the term ‘‘dynamical sys-
tems'’ was used. What is a dynamical system? In sim-
ple terms a dynamical system is a system whose
evolution from some initial state (which we know)
can be described by a set of rules. These rules may
be conveniently expressed as mathematical equa-
tions. The evolution of such a system is best de-
scribed by the so-called “'state space.” An example
of a simple dynamical system, a pendulum, and its
state space, is given below.

Consider a pendulum that is allowed to swing back
and forth from some initial state, as shown in figure
1a. The initial state can be completely described by
the velocity, v, and the position of the pendulum.
The position of the pendulum at any time can be
given by the angle x. Under such an arrangement,
Newtonian physics provides the equations (rules) that
describe the system’s evolution from the initial state.

Let us assume that the pendulum starts at position
1. At position 1 its initial state will be x = x,, and
velocity v = 0. The pendulum is then let free. As it
moves towards paint Q, its speed increases due to
gravity acceleration. After a while (position 2), the
pendulum will be closer to point 0 and will have a
higher speed. Once the pendulum crosses point 0 its
speed decreases, since now gravity acts in a direction
opposite to its motion. At some point (position 3), the
pendulum’s speed will become zero again. Immedi-
ately the pendulum will begin to swing back. After it
crosses point 0 it will once again attain, at some point,
a zero speed (position 4). Because there is always
some friction, however, the points at which the speed
becomes zero (to the right and left of point 0) are not
fixed but are found closer and closer to point 0. Fi-
nally, the pendulum will come to rest at point 0.

Apparently, the time evolution of the pendulum
can be completely described by two variables, namely
velocity and angle. These two variables define the
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Fic. 1.(@) A dynamical system is a system whose evolution from
some initial state can be determined by some rules. In the above
figure the motion of the pendulum can be completely described
by the laws of physics if its initial position and velocity are known.
{(b) An example of a dynamical system whose coordinates are the
velocity and the angle of the pendulum. As the pendulum swings
back and forth it follows a trajectory in the state space which
converges to a fixed point, or attractor of the dynamical system.

coordinates of the state space. If one plots the veloc-

ity (v) as a function of the angle (x) of the pendulum,
for the times corresponding to positions 1, 2, 3, 4,
one will arrive at figure 1b. Each point represents the
state of the system at a given moment, therefore a
trajectory that connects all points gives a visualiza-
tion of the evolution of the system. As shown, the
trajectory converges, that is stops, at point 0. As a
matter of fact, any other trajectory that corresponds
to an evolution of this dynamical system from a dif-
ferent initial state (velocity and position) will con-
verge at point O (i.e. no matter what the initial state,
the pendulum will always come to rest at point 0).
The point 0 in the state space is called an attractor.
It “attracts’’ all the trajectories in the state space. Ap-

Fic. 2. Another form of an attractor is the limit cycle. In this
case all trajectories are attracted by the limit cycle, which repre-
sents a period evolution. The pendulum of a grandfather clock is
a system that possesses a limit cycle as an attractor. Another fa-
miliar system with a limit cycle as its attractor is the heart.

parently, the behavior of the dynamical system in
question can be completely understood. Long-term
predictability is guaranteed. The pendulum will al-
ways come to rest at point 0. Point attractors therefore
correspond to systems that reach a state of no motion.

So far we have discussed only one form of attractor
(a point). The next simplest form of attractor is the
limit cycle (figure 2). A limit cycle in the state space
indicates a periodic motion. An example of a sys-
tem whose attractor is a limit cycle is the grandfather
clock, in which the loss of kinetic energy due to fric-
tion is compensated mechanically via a mainspring.
No matter how the pendulum clock is set swing-
ing, a perpetual, periodic motion will be achieved.
This periodic motion manifests itself in the state space
as a limit cycle. Again, in the case of systems that
havea limitcycle as an attractor, long-term predictabil-
ity is guaranteed.

Another form of attractor is the torus. The torus
looks like the surface of a doughnut (figure 3). In this
case, all the trajectories in the state space are at-
tracted to and remain on the surface. Systems that
possess a torus as an attractor are quasi-periodic. In
a quasi-periodic evolution a periodic motion is mod-
ulated by a second motion, itself periodic, but with
another frequency. The combination of frequencies
will produce a time series whose regularity is not
clear. The power spectrum, however, should consist
of sharp peaks at each of the basic frequencies with
all its other prominent features being combinations
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FIG. 3. Another form of an attractor is the torus. In this case the
evolution of the corresponding dynamical system from any initial
condition will follow a trajectory in the state space that will even-
tually be attracted and remain forever on the torus. The most im-
portant characteristic of a system that exhibits such an attractor is
that usually two initially nearby trajectories on the attractor remain
nearby forever.

of the basic frequencies. Geometrically, a quasi-pe-
riodic trajectory fills the surface of a torus, in the
appropriate state space (Thompson and Steward
1986). An important characteristic of such an attrac-
tor is that when the two frequencies have no common
divisor, any two trajectories which represent the ev-
olution of the system from different initial conditions,
and which are close to each other when they ap-
proach the attracting surface, will remain close to
each other forever (see figure 3). This characteristic
can be translated as follows. The two points in the
state space where the trajectories enter the attractor
can be two measurements (initial states) which differ
by some amount. Since these trajectories remain close
to each other, the states of the system at a later time
are going to differ to the same extent that they differed
“initially. Thus, if we know the evolution of such a
system from an initial condition, we can predict ac-
curately the evolution of the system from some other
initial condition. Again, in this case long-term pre-
dictability is guaranteed.

The above mentioned forms of attractors are “well-
behaved” attractors and usually correspond to sys-
tems ‘whose evolution is predictable. Often they are
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FIG. 4.(a) The data represent 10-second averages of the vertical
wind velocity over 11 hours. The data were recorded from 6:30
to 17:30 MST (Mountain Standard Time) (12:30 to 23:30 UTC) on
26 September 1986 at Boulder, Colorado. At about 6:30 (12:30)
the sun rises. The air close to the ground is heated and rises cre-
ating strong convection. Positive values indicate updrafts and neg-
ative values indicate downdrafts.

(b) The autocorrelation function for the above data. The inset graph
is a magnification of the region close to the origin.

(c) The logarithm of the spectral density as a function of the fre-
quency for the above data. The spectra shows various peaks on a
background of continuous frequency spectrum, suggesting a non-
periodic evolution.

called non-chaotic attractors. In mathematical terms,
the above mentioned attractors are smooth topolog-
ical submanifolds of the available state space. These
attractors are, therefore, characterized by an integer
dimension that is equal to the topological dimension
of the submanifold in the state space. A very impor-
tant characteristic of these attractors is that the long-
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term evolution of the systems they describe is not
sensitive to initial conditions.

3. Strange attractors

When one observes the spectra of turbulent motion,
one realizes that there is motion at all frequencies
with no preferred frequencies (see data in figure 4).
This broad-band structure of the spectrum indicates
that the motion is nonperiodic (or strictly speaking is
periodic with an infinite period). Could such a non-
periodic motion be due to a simple dynamical sys-
tem? Let us assume that the answer to this question
is yes. In such a case the trajectory in the state space
would be nonperiodic (never repeat itself) and never
cross itself (since once a system returns to a state it
was in some time in the past it then has to follow the
same path). Thus the trajectory should be of infinite
length but confined to a finite area in the state space.
This can only be the case if the attractor is not a
topological manifold but rather is a fractal set (see
figure 5 and table 1).

The first such system was discovered in 1963 by
Edward Lorenz (Lorenz 1963). This system, described
by the following three differential equations, gives an
approximate description of a horizontal fluid layer
heated from below. The fluid at the bottom gets
warmer and rises, creating convection. For a choice
of the constants that correspond to sufficient heating,
the convection may take place in an irregular and
turbulent manner: '

dx/dt = —ax + ay
dy/dt = —xz + bx — y
dz/dt = —xy — cz

where x is proportional to the intensity of the con-
vective motion, y is proportional to the horizontal
temperature variation, z is proportional to the vertical
temperature variation, and a, b, and ¢ are constants.
Figure 6a depicts the path of a trajectory in the state
space (x, ¥, z). The Lorenz attractor itself does not
look like the well-behaved attractors previously de-
scribed. The trajectory is deterministic (since it is the
result of the solution of the above system of equa-
tions), but is strictly nonperiodic. The trajectory loops
to the left and then to the right irregularly. Extensive
studies have shown that the fine structure of the Lor-
enz attractor is made up of infinetely nested layers
(infinite area) that occupy zero volume. One may
think of it as a Cantor-like set in a higher dimension.
Its fractal (Hausdorff-Besicovitch) dimension has been
estimated to be about 2.06 (see for example Grass-
berger and Procaccia 1983a).

The fractal nature of an attractor does not only im-
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Fic. 5. Fractals (Mandelbrot, 1983) are sets that are not topo-
logical. For sets that are topological the Hausdorff-Besicovitch di-
mension is an integer (0 for points, 1 for any curve, 2 for any
surface etc.). For sets that are fractal their Hausdorff-Besicovitch
dimension is not an integer but a real number. Because of that,
fractal sets have properties that topological manifolds do not have:
a) the Cantor set begins with a line of length one; then the middle
third is removed; then the middle third of all the remaining inter-
vals is removed and so on. The Cantor set or Cantor “dust’’ is the
number of points that remain. The total length of all intervals re-
moved is 1/3 + 2(1/3)> + 4(1/3)° + 8(1/3)* + .. ... = 1.
Thus, the length remaining must be zero. Therefore, in the Cantor
set the number of points is obviously infinite but their total length
is zero. The Hausdorff-Besicovitch dimension of this set (see sec-
tion 4 for ways of measuring this dimension) is 0.6309. It is defi-
nitely greater than the topological dimension of a ““dust”” of points
which is zero. b) the Koch curve begins with an equalateral triangle
with sides of length one; then at the middle of. each side a new
equalateral triangle with sides of length one-third is added; and so
on. The length of the constructed boundary is 3 x 4/3 x 4/3 X
4/3 X ... = . However, that boundary occupies no area
at all and it encloses a finite area which is less than the area of a
circle drawn around the original triangle. The Hausdorff-Besicov-
itch dimension of the Koch curve is 1.2618 (higher than the to-
pological dimension of any curve which is equal to one). Often
the Hausdorff-Besicovitch dimension is referred to as the fractal
dimension. Extentions of the above to higher dimensions should
be obvious. Such mathematical curiosities, abstract as they seem,
have now found a place in the study of dynamical systems. The
Koch curve has been reproduced from Mandelbrot (1983) after
permission from the author. More on the application of fractals in
meteorology can be found in Lovejoy and Schertzer (1986).
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TaBLE 1. Defining an infinite number of generalized dimensions.

& Hausdorff-Besicovitch (or fractal, or capacity) dimension, D,

|
D, = lim 220

o log (I71)

where N(!) is the number of n-dimensional cubes of length | needed to cover a set embedded in an n-dimensional Euclidean space.
® Information dimension, D, :

Ny

1
D, = lim —— ;
1= gy 2 P loe

where P, is the probability of a point from a long time series to fall in cube i of the covering.
® Correlation dimension, D,

m log C(r)

D, =1li

~o logr

where C(r) is the correlation function defining the number of pairs of points in the set with distance less than r. The definition of the
correlation dimension D, can be extended to consider higher order correlation functions that define the number of triplets, of
quatruplets and of n-tuplets of points. This way an infinite number of generalized dimensions D;, D, . . . . . D, can be obtained. In
general it can be proved that D, > D, > D, > . . . > D, where the inequality is replaced by the equality only in special cases
(Hentschel and Procaccia 1983).

TaBLe 1. Given a fractal set there exist an infinite number of different (and relevant) generalized dimensions (or exponents) that
characterize that set. The fact that fractal measures lead to all those different exponents was first noted in Mandelbrot (1974). Because
of that, today many times we talk in terms of multifractals were a hierarchy of fractal dimensions can be defined. A complete knowledge
of the set of generalized dimensions or exponents is equivalent to a complete characterization of a fractal set or a strange attractor. For
some of the consequences and applications of multifractals in meteorology see Lovejoy et al. (1987) and references therein.

FIG. 6.(a) An example of a strange attractor with implications in the weather forecasting problem. This structure in the state space

represents the attractor of a fluid flow which travels over heated surface. All trajectories (which will represent the evolution of that system
for different initial conditions) will eventually converge and remain on that structure. However, any two initially nearby trajectories in
the attractor do not remain nearby, but diverge. (Figure courtesy of Dr. James Crutchfield).
(b) The effect of the divergence of initially nearby trajectories in the attractor: The dot in FiG. 6(a) represents 10,000 measurements (initial
conditions) that are so very close to each other that they are practically indistinguishable. If we allow each of these states to evolve
according to the rules, because their trajectories diverge irregularly, after a while their states can be practically anywhere. (Figure courtesy
of Dr. James Crutchfield).
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ply nonperiodic orbits. It also causes nearby trajec-
tories to diverge. As with all attractors, trajectories
that are initiated from different initial conditions soon
reach the attracting submanifold, but two nearby tra-
jectories do not stay close to each other (as was the
case with the torus). They soon diverge and follow
totally different paths in the attractor.

The divergence means that the evolution of the sys-
tem from two slightly different initial conditions will
be completely different, as may be seen in figures 6a
and 6b. The dot in figure 6a represents 10,000 initial
conditions that are so close to each other in the at-
tractor that they are indistinguishable. They may be
viewed as 10,000 initial situations that differ only
slightly from each other. If we allow these initial con-
ditions to evolve according to the rules (equations)
that describe the system, we see (figure 6b) that after
some time the 10,000 dots can be anywhere in the
attractor. In other words, the state of the system after
some time can be anything despite the fact that the
initial conditions were very close to each other. Ap-
parently, the evolution of the system is very sensitive
to initial conditions. In this case we say that the sys-
tem has generated randomness. We can now see that
there exist systems that, even though they can be
described by simple deterministic rules, can generate
randomness. Randomness generated this way has
been termed chaos. These systems are called chaotic
dynamical systems and their attractors are often
called strange or chaotic attractors.

The implications of such findings are profound. If
one knows exactly the initial conditions, one can fol-
low the trajectory that corresponds to the evolution
of the system from those initial conditions and basi-
cally predict the evolution forever. The problem,
however, is that we cannot have a perfect knowledge
of initial conditions. Our instruments can only mea-
sure approximately the various parameters (temper-
ature, pressure, etc.) that will be used as initial
conditions. There will always be some deviation of
the measured from the actual initial conditions. They
may be very close to each other, but they will not be
the same. In such a case, even if we completely know
the physical laws that govern our system, due to the
nature of the underlying attractor the state of the sys-
tem at a later time can be totally different from the
one predicted. Simply, due to the nature of the sys-
tem, initial errors are amplified and therefore predic-
tion is limited. Recently, ideas from the theory of
chaotic dynamical systems have been applied to sim-
ple models that describe climatic fluctuations and
transitions between ice ages and today’s climate (Ni-
colis 1987; Tsonis and Elsner 1988b). These studies
attribute the broad-band structure of the spectrum of
observed climatic data to the presence of nonperiodic
chaotic attractors. The attractors are very sensitive to
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the initial conditions, in accordance with the intrinsic
unpredictability of the climatic system (Lorenz 1984).

4. The search for attractors in weather
and climate

One very important consequence of knowing the
Hausdorff-Besicovitch dimension of an attractor is that
the dimensionality of an attractor, whether fractal or
not, indicates the minimum number of variables pres-
ent in the evolution of the corresponding dynamical
system (in other words the attractor must be embed-
ded in a state space of at least its dimension). There-
fore, the determination of the Hausdorff-Besicovitch
dimension (or for that matter of any other generalized
dimension) of an attractor sets a number of con-
straints that should be satisfied by a model used to
predict the evolution of a system.

If the mathematical description of a dynamical sys-
tem is given, the number of variables is known and
the generation of the state space and of the attractor
is straightforward.

If the mathematical formulation of a system is not
available, the state space can be replaced by the so-
called phase space. The phase space may be pro-
duced using a single record of some observable vari-
able x(t) from that system (Packard et al. 1980; Reulle
1981; Takens 1981). The physics behind such an ap-
proach is that a single record from a dynamical sys-
tem is the outcome of all interacting variables and
thus information about the dynamics of that system
should, in principle, be included in any observable
variable. The mathematical procedure used to prove
the existence and nature (chaotic or not) is as follows.
It is assumed that variables present in the evolution
of the system in question satisfy a set of n first-order
differential equations:

X1 = hixy, Xp, oL Xp)
)‘(2 = fz(X“ X2, ....... Xn)
X = X, %0 oL Xp)

where one dot indicates the first derivative with re-
spect to time. In such a case the coordinates of the
state space are (x;, X . . . . . .. X,). The above system
of differential equations can be reduced to one highly
nonlinear differential equation of n™ order. This can
be achieved by successive differentiation of one of
the equations describing the system (equation 1). In
this way, one may obtain an n" order differential
equation.
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and replace the coordinates of the state space with
(X9, X9, Xq) o o oo i n s X" Mor (X, Xy, oo . .. x,™)
without any loss of information about the evolution
or the dynamics of the system. Ruelle (1981) sug-
gested that instead of a continuous variable x(t) and
its derivatives, a discrete time series x(t) and its suc-
cessive shifts by a delay parameter 7 should be suf-
ficient to identify attractors in the time evolution of a
single variable (one should think of the shifting op-
eration on a discrete-time series as analogous to
differentiation of a continuous-time series). Thus, given
an observable x(t), one can generate the complete
state vector X() by using x(t + 1) as the first coordi-
nate, x(t + 21) as the second coordinate, and x(t +
nt) as the last coordinate. This way we can define
the coordinates of the phase space, which should
approximate the dynamics of the system from which
the observable x(t) was sampled (or in other words
the unknown state space). The parameter n is often
referred to as the embedding dimension. For an n-
dimensional phase space, a “’cloud’’ or a set of points
will be generated. The Hausdorff-Besicovitch dimen-
sion of this set can be estimated by covering the set
by n-dimensional cubes of side length | and deter-
mining the number of cubes N(/) needed to cover the
set in the limit /| — 0 (Mandelbrot 1983). This is the
so called box-counting algorithm and if this number
scales as

N(I) o [

|— 0

(equation 2) then the scaling exponent d is an esti-
mation of the Hausdorff-Besicovitch dimension for
that n. In a log N(/), log I plot the exponent d can be
estimated by the slope of a straight line. Using the
state vector X(t) we can test equation 2 for increasing
values of n. If the original time series is random, then
d = n for any n (a random process embedded in a
n-dimensional space always fills that space). If, how-
ever, the value of d becomes independent of n (that
is, reaches a saturation value D,) it means that the
system represented by the time series has some struc-
ture and should possess an attractor whose Haus-
droff-Besicovitch dimension is equal to D,. The above
procedure for estimating D, is a consequence of the
fact that the actual number of variables present in the
evolution of the system is not known and thus we do
not know a priori what n should be. We must, there-
fore, vary n until we “tune”” to a structure which
becomes invariant in higher embedding dimensions
(an indication that extra variables are not needed to
explain the dynamics of the system in question).
The above numerical approach to estimate the di-
mension of an attractor from a time series is, how-
ever, very limited. The reason for that is that an
enormous number of points on the attractor is re-
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quired to make sure that a given area in the phase
space is indeed empty and not simply visited rarely.
It has been documented (Froehling et al. 1981 and
Greenside et al. 1982) that a box-counting approach
is not feasible for phase space dimensions greater
than two.

An alternative approach which is much more ap-
plicable has been developed by Grassberger and Pro-
caccia (1983a and 1983b). This approach again
generates in an n-dimensional phase space a cloud
of points. But instead of covering the set with hyper-
cubes, it finds the number of pairs N(r,n) with dis-
tances less than a distance r. In this case, if for
significantly small r, we find that

N(r,n) o« ro

(equation 3) we call the scaling exponent d, the cor-
relation dimension of the attractor for that n. We then
test equation 3 for increasing values of n and check
as previously for a saturation value D5, which will be
an estimation of the correlation dimension of the at-
tractor. It should be mentioned at this point that T can
be small, but care should be taken not to include in
the sums pairs whose time separation is less than the
correlation time. The correlation dimension D, is less
than the Hausdorff-Besicovitch (or fractal) dimension
D, and actually measures the spatial correlation of
the points that lie on the attractor. For a random time
series there will be no such spatial correlation in any
embedding dimension and thus no saturation will be
observed in the exponent d,. The above approach
still requires a large number of points (especially for
high embedding dimensions), but at least it is more
feasible than the box-counting method. Recently, a
new algorithm was proposed which promises to be
even more applicable (Badii and Politi 1985). This
algorithm is called the nearest neighbor algorithm.
The algorithm calculates the distance between each
point and its nearest neighbor, &; where i = 1,
..... .. N and N is the total number of points in
the phase space. The y-moment of this distance is
related to a dimension-function D(y) according to the
relation in equation 4:

1 N ty
— 6;}] o« NI/OOI

The dimension function is related to the generalized
dimensions, D,, via the expression D(y = (1 — q)Dq)
=Dgforq=0,1,2,....... n. Thus, by applying
equation 4 for choices of y, information about all the
exponents that characterize the attractor can be in-
ferred. This technique leads, according to Badii and
Politi, to rather robust estimates of the dimension for
smaller N than the pair-counting algorithm. How-
ever, it is a relatively new technique and has not yet
been applied extensively to weather data.
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The search for attractors in weather and climate is
driven by the desire to investigate the observed com-
plexity in the atmosphere. The theory of chaos pro-
vides us with new tools to do just that. An exact
mathematical formulation of atmospheric processes
has not yet been developed, therefore, observable
weather variables are considered in the search for
attractors in weather and climate. One such appli-
cation involves the data shown in figure 4 and has
been reported by Tsonis and Elsner (1988a). The data
represent 10-second averages of the vertical wind ve-
locity recorded 10 meters above the ground over an
11-hour period. The decorrelation time was defined
as the lag time at which the autocorrelation falls be-
low a value of 0.10. This value can be inferred from
figure 4 as approximately 20 seconds. From these
data the state vector X(t) was generated and the phase
space was produced for embedding dimensions two
and higher using © = 10 sec. For each embedding
dimension the number of pairs N(r,n) with distances
less than r is then found as a function or r. Then the
logarithm Ni(r,n) is plotted against the logarithm of r.
Figure 7 shows these plots for selected embedding
dimensions. From this information and for each
embedding dimension, the scaling region is deter-
mined and its slope is calculated by fitting a straight
line in that region. The slope of the straight line gives
the scaling exponent d, in equation 3. More details
on the above application, discussion about the scal-
ing behavior of a particular data set, and the possible
problems associated with fitting a straight line to in-
tervals of r for which r is too large or too small, can
be found in Tsonis and Elsner (1988a) and Essex et
al. (1987). Figure 8 shows the scaling exponent as a
function of the embedding dimension, together with
a plot representing the time series as a random sam-
ple of the same size as the vertical velocity data set.

- From that figure and for the wind data it was esti-
mated that D, = 7.3. Note that no saturation for
exponent d, is observed for the random sample. it
can be concluded that the system represented by the
vertical wind velocity (the atmosphere over very short
time scales in this case) possesses an attractor. Since
the dimensionality of this attractor is noninteger, the
attracting submanifold is a fractal set (i.e. the attractor
is strange). Such a finding provides us with the min-
imum number of degrees of freedom (differential
equations) that are needed to reproduce the dynamics
of weather on very short time scales.

Other notable related studies include the analysis
of Nicolis and Nicolis (1984), who were the first to
apply the above ideas to climatic studies. They used
single-variable values of oxygen isotope records of
deep sea cores spanning the past million years (see
also Fraedrich 1987). These data are related to global
temperature fluctuations during that time interval.

10
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FiIG. 7. Plot of In N(r,n} against Inr for embedding dimensions,
n=4,6,8,10, 12. Note the convergence of slopes as n increases.
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Fic. 8. Scaling exponent, d,, as a function of the embedding
dimension, n. Crosses correspond to the wind velocity data and
squares to a random sample of the same size as the wind data.
Note the saturation of the scaling exponent observed for the wind
data while there is no saturation for the random set. From this
Figure it is estimated that D, = 7.3.

They reported a dimension for the climatic attractor
equal to 3.1. Fraedrich (1986) applied the same anal-
ysis over a period of 15 years using daily pressure
data, and Essex et al. (1987) applied the analysis over
a period of 40 years using daily geopotential data.
Both groups reported a dimension of the weather at-
tractor between 6 and 7. Recently, as we described
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above, Tsonis and Elsner (1988a) extended that anal-
ysis to very short time scales. All the above studies
have made use of the pair-counting algorithm and,
technically speaking, may all suffer to an extent from
using fewer than required data points (Smith 1987 and
1988). That will cause some uncertainty about the
estimated value of the dimension of the attractor.
Nevertheless, very long records are, unfortunately,
not available most of the time. New and more effi-
cient algorithms will probably take care of such lim-
itations. At this point, although the existence or not
of attractors in weather is still an open question, it is
significant that the empirical studies indicate that low-
dimensional attractors may be present in weather and
climate. The fact that the inferred dimensions seem
to be different for different time scales may indicate
that the attractors (and thus predictability) are differ-
ent and a function of the time scale. On the other
hand, it may be that when considering a certain time
scale we are only looking at a certain part of a grand
attractor. Both possibilities are very exciting. It is an-
ticipated that research in this area will provide many
clues about the predictability and interaction of dif-
ferent time scales.

5. Conclusions

Chaos theory has opened new horizons in science
and is already considered by many to be the most
important discovery in the twentieth century after rel-
ativity and quantum mechanics.

Many systems in nature are chaotic. The devel-
opments in the study of chaotic dynamical systems
have suggested that nature imposes limits on predic-
tion. At the same time, however, it has been realized
that the very existence of the attractors implies that
randomness is restricted to the attractors. The atmo-
sphere may be chaotic, but its evolution is confined
to a specific area in the state space that is occupied
by the attractor. No states outside this area are al-
lowed. The winds associated with a high pressure

system, for example, can never blow counterclock-

wise.

The theory of chaotic dynamical systems has im-
proved our understanding of the behavior of the at-
mosphere. At the same. time, even though it has
provided an excuse for the unpredictability of weather,
the theory of dynamical systems is slowly shaping our
way of investigating the weather and its prediction.
For example, it may very well be that generalizations
based on the study of specific cases (which may never
happen exactly again) can no longer be appropriate.

Together with some pessimism, the study of cha-
otic dynamical systems provides some optimism. We
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" may never be able to predict the weather exactly, but

improvements in weather forecasting are feasible if
we improve the completeness and accuracy with which
we measure the initial condition of the atmosphere,
and if we understand predlctablhty at different time
scales.

The impact of chaos theory has already been felt
in many areas of science. if we give it a chance its
impact will be felt in the atmospheric sciences as
well. After all, chaos was essentially discovered by a
meteorologist.
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