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Synopsis

Mesoscale systems in the atmosphere are those in which the instantaneous pressure field can be determined accurately by the
temperature field, but the winds, even in the absence of surface frictional effects, are out of balance with the horizontal
pressure gradient force. The framework of mesoscale models is overviewed and shows that the models include a physics base
core comprising the pressure gradient force, advection, and gravity, and all other physical processes that are parameterized
using tuned modular representations of turbulence, longwave and shortwave radiation, cumulus, and stable cloud processes.
Computational methods, lateral and initial boundary conditions, and model validation are some of the topics discussed.

Introduction

Atmospheric mesoscale systems are identified as those in which
the instantaneous pressure field can be determined accurately
by the temperature field, but the winds, even in the absence of
surface frictional effects, are out of balance with the horizontal
pressure gradient force. The pressure field, under this situation,
is said to be ‘hydrostatic.’ Larger scale atmospheric features
(which are called ‘synoptic’ weather features), in contrast, have
a wind field that is close to a balance with the horizontal
pressure gradient force. These large-scale winds are said to be
near gradient wind balance. Atmospheric features that are
smaller than the mesoscale have pressure fields in which wind
acceleration is a significant component (which is referred to as
the dynamic wind). The pressure gradient that causes this
dynamic wind is called the nonhydrostatic pressure.

Atmospheric mesoscale models are based on a set of
conservation equation for velocity, heat, density, water, and
other trace atmospheric gases and aerosols. The equation of
state used in these equations is the ideal gas law. The conser-
vation of velocity equation is derived from Newton’s second
law of motion as applied to the rotating Earth. The conserva-
tion of heat equation is derived from the first law of thermo-
dynamics. The remaining conservation equations are written
as a change in an atmospheric variable (e.g., water) in a
Lagrangian framework where sources and sinks are identified.

Each of these conservation equations can be written to
represent the changes following a parcel of velocity, potential
temperature (entropy), water in its three phases, other atmo-
spheric gases and aerosols, and mass, including source–sink
terms. Models, however, seldom express the conservation
relations in a Lagrangian framework. The chain rule of calculus
is used to convert to an Eulerian framework.

Several assumptions are typically made in the conservation
equations. These include the neglect of small-scale fluctuation
of density except when multiplied by gravity (this is called the
Boussinesq approximation), the neglect of vertical acceleration
relative to the differences between the vertical pressure gradient
force and gravity (referred to as the hydrostatic assumption),
and the neglect of all molecular transfers.

The first two assumptions have not been made in recent
years in the models, however, since the numerical equations are
actually easier to solve without these assumptions. Nonethe-
less, the spatial and temporal scales of mesoscale systems result

in the two assumptions being excellent approximations with
respect to mesoscale-sized systems. The third assumption is
justified since advection is much more significant at transfers of
heat, momentum, water, and other chemical species, than
molecular motion on the mesoscale.

These conservation relations that are written as a set of
simultaneous, nonlinear differential equations, unfortunately,
cannot be used without integrating them over defined volumes
of the atmosphere. These volumes are referred to as the model
‘grid volume’. The region of the atmosphere for which these
grid volumes are defined is called the ‘model domain.’ The
integration of the conservation relations produces ‘grid volume
averages,’ with point-specific values of the variables called
‘subgrid-scale values.’ The ‘resolution’ of data is limited to two
grid intervals in each spatial direction.

The result of the grid volume averaging produces equations
for the local time derivative of the grid volume-resolved vari-
able which includes ‘subgrid-scale fluxes.’ An assumption that
is routinely made in all mesoscale models (usually without
additional comment) is that the gird volume average of sub-
grid-scale fluctuations is zero. This assumption, often referred
to as ‘Reynold’s averaging,’ is actually only accurate when there
is a clear spatial scale separation between subgrid scale- and
grid volume-resolved quantities.

Mesoscale model equations have been solved in a Cartesian
coordinate framework. Each coordinate in this system is
perpendicular to the other two coordinates at every location.
Most mesoscale models, however, transform to a generalized
vertical coordinate. The most common coordinates involve
some form of terrain-following transformation, where the
bottom coordinate surface is terrain height or terrain surface
pressure. The result of these transformations is that the new
coordinate system is not orthogonal, in general. Unless this
nonorthogonality is small, the correct treatment of non-
hydrostatic pressure effects in mesoscale models requires the use
of tensor transformation techniques, as opposed to the separate
use of the chain rule on each component of velocity, separately.
The use of generalized coordinate systems introduces additional
sources for errors in the models, since the interpolation of
variables to grid levels becomes more complicated.

The model variables also need to be defined on a specified
grid mesh. When all dependent variables are defined at the
same grid points, the grid is said to be ‘nonstaggered.’ When
dependent variables are defined at different grid points, the grid
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is called a ‘staggered grid.’ The grid meshes can also be defined
with smaller grid increments in one region surrounded by
coarser grid increments. Such a grid is referred to as a ‘nested
grid.’ If the grid increments vary at all locations, with the finest
grid in a specified volume, the grid is called a ‘stretched grid.’

The subgrid-scale fluxes in mesoscale models are parame-
terized in terms of resolvable variables. Turbulence theory, as
observed from atmospheric field campaigns over horizontally
homogeneous landscapes, and for undisturbed atmospheric
conditions, is the basis for all mesoscale model representations
of the vertical subgrid-scale flux terms. The vertical fluxes are
parameterized differently when the lowest 50 m or so of the
atmosphere are unstably stratified and when it is stably strati-
fied. The planetary boundary is typically represented by three
layers: a thin layer of a few centimeters near the surface where
laminar fluxes are important (called the ‘laminar layer’), a layer
above which extends upward tens of meters where wind
direction with altitude is ignored (referred to as the ‘surface
layer’), and the remainder of the boundary layer where the
winds approach the free atmospheric value (referred to as the
‘transition layer’). Disturbed (unsteady) boundary layers are
not parameterized accurately, however, by existing parameter-
izations. The effect of land surface heterogeneity has been
included on the subgrid scale only as a weighting of the surface
layer fluxes by the fractional coverage of each land surface type.
This technique is called the ‘mosaic’ or ‘tile’ subgrid-scale
surface flux parameterization.

In contrast to the vertical fluxes, horizontal subgrid-scale
fluxes in mesoscale models have no physical basis. They are
included only to horizontally smooth the model calculations.

The representation of the source–sink terms in the conser-
vation equations can be separated into two basic types: those
that are derived from basic concepts and those that are
parameterized. The only basic source–sink terms in mesoscale
models that are derived from fundamental physical concepts
are the pressure gradient force, advection, and gravity. Neither
of these two effects involves adjustable (i.e., tunable) coeffi-
cients, which is one method to separate fundamental terms in
the conversation equation from a parameterization. The
remainder of the source–sink terms needs to be parameterized.
Almost all parameterizations currently used in these models are
either box or vertical column representations.

The radiative flux terms are typically separated into
shortwave and longwave fluxes. The shortwave fluxes, also
called ‘solar fluxes,’ are separated into direct and diffuse irra-
diance. The direct irradiance is the nonscattered flux, whereas
the diffuse irradiance is the scattered radiative flux from the
Sun. The direct irradiance is sometimes further separated into
visible and near-infrared components. In cloudy model
atmospheres, parameterizations based on cloud liquid water
content, or more crudely on arbitrary attenuation based on
relative humidity in the model, are used. Typically, only diffuse
irradiance is permitted for overcast model conditions. Some
models weight the fluxes for partly cloudy skies, using weighted
parameterizations for both clear and overcast sky conditions.
Polluted atmospheres also require parameterization on their
effect on solar irradiance, although only a few mesoscale
models have explored this issue.

Longwave irradiance is from the Earth’s surface and from
within the atmosphere. Scattering of longwave radiative fluxes

is typically ignored, such that only upwelling and down-
welling irradiances are parameterized. This type of parame-
terization is called a ‘two-stream approximation.’ The major
absorbers and emitters represented in mesoscale model
parameterizations are liquid and ice clouds, water vapor, and
carbon dioxide. Clouds are usually parameterized as black
bodies to longwave irradiance. The wave vapor and carbon
dioxide are represented by the path length through the
atmosphere, and their concentrations along their path. As with
solar radiative fluxes, mesoscale models seldom includes
parameterizations of longwave irradiance associated with
pollution. This neglect is partially a result of the dependency of
the absorption, transmissivity, and scattering of both solar and
longwave irradiance on the specific chemical composition and
size spectra of the pollution.

The phase changes of water and this effect on the conser-
vation of heat source–sink term are separated into stable cloud,
cumulus convective cloud, and precipitation parameteriza-
tions. Stratiform cloud parameterizations range in complexity
from algorithms which instantaneously precipitate rain (or
snow) when the model relative humidity exceeds a user-
specified relative humidity (referred to as a ‘dump bucket’
scheme), to individual conservation equations for several
categories of hydrometers (e.g., cloud water, rain water, ice
crystals, snow, graupel, and hail). For the larger hydrometeors,
a nonzero, finite terminal fall velocity is usually specified. More
detailed microphysical representations, where cloud hydrom-
eter spectra are classified into more size class intervals (called
‘microphysical bin parameterizations’) are also used.

The parameterization of cumulus cloud rainfall utilizes
some form of one-dimensional cloud model. These are called
‘cumulus cloud parameterization schemes.’ Their complexity
ranges from instantaneous readjustments of the temperature
andmoisture profile to the moist adiabatic lapse rates when the
relative humidity exceeds saturation, to representations of a set
of one-dimensional cumulus clouds with a spectra of radii.
These parameterizations typically focus on deep cumulus
clouds, which produce the majority of rainfall and diabatic
heating associated with the phase changes of water. Cumulus
cloud parameterizations remain one of the major uncertainties
in mesoscale models, since they usually have a number of
tunable coefficients, which are used to obtain the best agree-
ment with observations. Also, since mesoscale model resolu-
tion is close to the scale of thunderstorms, care must be taken
so that the cumulus parameterization and the resolved moist
thermodynamics in the model do not ‘double count’ this
component of the source–sink terms.

The grid volume-averaged conversation equations are
nonlinear and, therefore, must be solved using numerical
approximation schemes. The solution techniques include finite
difference, finite element, interpolation (also called semi-
Lagrangian), and spectral methods. Both temporal–spatial
terms and the source–sink terms must be represented by these
approximation schemes. An important aspect of mesoscale
models is that only advection and the pressure gradient force
involve horizontal gradients explicitly. All other model terms,
including each of the source–sink terms, are one-dimensional
column models or point values.

Finite difference schemes involve some form of truncated
Taylor series expansion. The finite element technique uses
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a local basis function to minimize the numerical error, whereas
the spectral method utilizes global basis functions. A spectral
method has the advantage that differential relations are con-
verted to algebraic expressions. The semi-Lagrangain scheme is
based on fitting interpolation equations to data at a specific
time and advecting the data with model winds.

Mesoscale models have predominately utilized the finite
difference and (for advection) the semi-Lagrangian approaches.
A few groups have applied the finite element method, but its
additional computational cost has limited its use. The spectral
method, which is most valuable for models without lateral
boundaries, has not generally been used since mesoscale
models have lateral boundaries.

The use of numerical approximations introduces errors.
Linear stability analyses show that it is impossible to create
a numerical solution scheme which accurately represents both
amplitude change over time and speed of motion (advection
and gravity wave propagation) for features that are shorter than
about four grid increments in each spatial direction. In addi-
tion, products of the variables (which are a nonlinear terms)
produce transfers of spatial scales to larger and smaller scales.
The inability of the numerical model to sample the smallest
scales (less than two grid intervals) results in the information
(e.g., winds and temperature) erroneously appearing at a larger
spatial scale. This error is called ‘aliasing’ and unless corrected
can result in an incorrect accumulation of atmospheric struc-
ture at the wrong spatial scale. For these reasons, the term
‘model resolution’ should be reserved for features that are at
least four grid intervals in each direction.

To integrate the models forward in time, the variables must
be initialized. These values are called ‘initial conditions.’
Observed data, or a combination of observed data and previous
model calculations, are typically used to initialize the mesoscale
models. The insertion of data during a model calculation is
called ‘four-dimensional data assimilation (4DDA).’ Lateral, top,
and bottom boundary conditions are also needed for the dura-
tion of the model calculations. Lateral boundary conditions in
mesoscale models can be idealized for theoretical studies (e.g.,
cyclic boundary conditions), or derived from large-scale obser-
vations, such as the NCEP Reanalysis or from larger scale model
simulations (which is referred to as dynamic downscaling).
Mesoscale models are often strongly influenced by the lateral
boundary conditions, such that their accurate representation is
a necessary condition for an accurate mesoscale simulation.

The top boundary conditions are similar to the lateral
boundary condition and must be accurately represented. Most
mesoscale models extend into the stratosphere, in order to
minimize the effect of the model top on the mesoscale simu-
lation. Damping zones at the model top (referred to as an
‘absorbing layer’) are usually inserted so that upward propa-
gating model simulated gravity waves do not erroneously
reflect from the artificial model top.

The surface boundary is the only surface of a mesoscale
model which is physically based. This surface is typically
separated into ocean (and fresh water lakes) and land surfaces.
Ocean and lake surfaces can be represented simply as
prescribed sea surface temperatures or using mesoscale atmo-
spheric models coupled to mesoscale ocean, lake, and/or sea
ice models. Over land, the ground is separated into bare
soil and vegetated land. Soil–vegetation–atmosphere transfer

schemes (SVATS) have been introduced to represent the fluxes
of velocity, heat, moisture, and other trace gases between the
atmospheres and the surface. Most SVATS include the effect
on water flux of transpiration. Recently, vegetation dynamical
processes, such as plant growth have been included in longer
term (months to seasons) mesoscale model calculations.

Model performance is assessed in several ways. The compar-
ison of observations withmodel results using statistical skill tests
is a major assessment tool. A complication of these evaluations
is that observations have a different sampling volume (e.g.,
a point) than themodel grid volume. Comparisons of simplified
(usually linearized) version of numerical models with analytic
theory have been completed to test the accuracy of linear
components of the model. Several models can be intercompared
to assess what features they have in common, and which they do
not. The mass and energy budgets of the mesoscale models, if
they are each calculated in two separate manners, provide an
opportunity to check the internal consistency of the model. Peer-
reviewed scientific publications and the availability for scrutiny
of the model source code provide two additional valuable
procedures to assess the value of the mesoscale model and the
degree to which the programmed model logic agrees with the
mathematical formulations presented in the literature. Proposals
have been made to standardize the model computer codes, in
order to assist in their more general use.

Mesoscale models have been applied to two basic types of
mesoscale systems: those found primarily by initial and lateral
boundary conditions (referred to as synoptically forced meso-
scale systems) and those forced by surface boundary conditions
(referred to as surface-forced mesoscale systems). Of the latter
type, there are mesoscale systems that are caused when terrain
is an obstacle to the flow (referred to as ‘terrain-forced’ or
orographic mesoscale systems) and those generated by hori-
zontal gradients in sensible heating of the surface (called
‘thermally forced’ mesoscale systems).

With the improvement in computational power, global
models will soon approach mesoscale spatial and temporal
resolution (which requires horizontal grid increments of
w1 km). This high resolution will eliminate lateral boundary
conditions as a component in the accurate simulation of
mesoscale atmospheric features models.
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