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ABSTRACT

Identification of subregions that share similar historical drought variability provides useful information for
drought monitoring, mitigation planning, and resource allocation. This study examined space-time historical
drought variability for the Great Plains spanning from 1901 to 2015 by using rotated Empirical Orthogonal
Functions (rEOFs). The Standardized Precipitation-Evapotranspiration Index (SPEI) on a three-month timescale
was utilized to examine spatial and temporal changes in agricultural drought. We propose a new procedure for
identifying the number of rEOFs to be selected for reconstructing subregions. Drought event intensities of
moderate, severe, and extreme categories increased in recent years although the number of drought events
decreased. Seasonal rEOFs demonstrated that 9-12 subregions were adequate to explain a significant proportion
of the original variability in the Great Plains. The time series for each subregion was highly correlated to the
original SPEI data and reflected the seasonal meteorological processes that drive drought variability. Several
significant wetting trends were found, and there was statistical evidence that drought and wetting event seve-
rities had increased for a few subregions. Summer drought has become more variable across space and time,
indicating that a more diverse set of resources and strategies might be needed to mitigate impacts of spatially-
variable drought and wetting events in coming decades. Winter season drought has become less variable, in-
dicating that perhaps resources could be consolidated when dealing with impacts on a larger scale; however, less
variability implies that drought and wetting events may occur across larger regions of the Great Plains during a
given season.

1. Introduction

deficit sufficient to have an adverse effect on vegetation, animals, and
society, is a multi-faceted and complex climate-related phenomenon

Regionalizing variability across space and time is a complex multi-
scalar problem. The demand for regional assessments of historical cli-
mate variability is growing due to its value in decision-making pro-
cesses such as the management of water resources and agricultural
systems (Bonaccorso et al., 2003; Omondi et al., 2013). The Great
Plains of the United States is a significant contributor to U.S. and global
food production and relies on both optimal climatic conditions and crop
management practices to sustain high production. Changes in regional
climate due to human and natural variations and long-term change
generate uncertainty in global food security (Easterling et al., 1993;
Pielke et al., 2013). Daily, monthly, and annual perturbations in
weather and climate across this agricultural region create significant
impacts at local and regional scales. Drought, a condition of moisture

(Sonmez et al., 2005; Warwick, 1975). The Great Plains has experi-
enced highly variable drought conditions throughout the historical
climate record (since the late 1800s). The most notable droughts in-
clude the multi-year droughts of the 1930s and 1950s and the more
recent droughts in the late 1980s and 2011-2012 that resulted in bil-
lions of dollars in agricultural losses (Svoboda et al., 2002). Human
activity such as the expansion of agriculture into marginal lands
(Colaizzi et al., 2009) or groundwater depletion (Russo and Lall, 2017)
has been shown to modify the vulnerability of agricultural systems to
drought impacts. Poor management practices during the Dust Bowl era
of the 1930s led to high rates of soil erosion and decreasing land pro-
ductivity that resulted in off-farm migration (McLeman et al., 2014).
Changes in policy and management practices that resulted from lessons
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learned during the 1930s resulted in less severe agricultural impacts
during the 1950s (Wiener et al., 2016). Rising temperatures would in-
tensify droughts due to increases in evaporation from the soil and
transpiration from vegetation leading to more frequent withdrawals of
underground water resources (IPCC, 2014). Across the Great Plains,
such a change would increase the number of climate-related challenges
and might include (1) resolving increasing competition among land,
water, and energy resources; (2) developing sustainable agricultural
systems; (3) conserving diverse ecological systems; and (4) enhancing
the resilience of communities to the impacts of extreme events, in-
cluding more intense heat waves, cold snaps, drought, and flooding
events (Shafer et al., 2014).

The Great Plains cover a wide range in latitude and elevation,
spanning the continental land area between northern Mexico and the
Prairie provinces of Canada and experiencing an elevation gain of more
than a thousand meters from Texas to the base of the Rocky Mountains.
Although its latitudinal extent exceeds its spread in longitude, the Great
Plains has a gradient in annual precipitation of more than 1200 mm in
gulf coastal areas in the southeast to less than 400 mm at the eastern
slopes of the Rocky Mountains (Pielke and Doesken, 2008). The Képpen
climate classification divides the Great Plains into four main categories:
humid subtropical, hot-summer humid continental, warm-summer
humid continental, and cold semi-arid (Koppen, 2011). Differences in
classifications are generally driven by latitude and elevation, corre-
sponding with gradients in annual mean temperature and precipitation.
The precipitation gradient results in two types of grasslands that
dominate the Great Plains: short and tallgrass prairie in the west and
east, respectively (Kiichler, 1964). These grasslands are vital ecosys-
tems for farming, grazing, and biofuel production and are highly sen-
sitive to rainfall variability (Knapp and Smith, 2001; Shafer et al.,
2014). Low precipitation during the growing season can trigger agri-
cultural drought, which occurs when soil moisture availability falls
below a level that has an adverse effect on crop production (Panu and
Sharma, 2002). The economic importance of this region and the space-
time variability of precipitation and temperature underscore the need
for additional assessments of drought variability on timescales affecting
these agricultural and socioeconomic systems, e.g., seasonal and
monthly.

Several studies and methods have been used to examine historical
drought variability of the Great Plains. Although records of climate
observations began in the late 1800s, scientists have used tree rings to
reconstruct the paleoclimatic record over the last several centuries,
indicating that multi-decadal droughts as severe as major droughts of
the twentieth century have occurred in the Great Plains in the last
millennium (Sauchyn et al, 2003; Stockton and Meko, 1983;
Woodhouse and Overpeck, 1998). Other methods have been utilized to
examine the characteristics of drought during the instrumental record.
Guttman (1998) used spectral analysis of several drought indices to
classify weather stations across the United States according to their
characteristics, and his results demonstrated incoherent regional pat-
terns in the Great Plains. Other studies have used the trends directly
calculated from the Standardized Precipitation Index (SPI) or the
Palmer Drought Severity Index (PDSI) to show both wetting and drying
has occurred across areas of the Great Plains (Logan et al., 2010; Yuan
and Quiring, 2014). In addition to drought indices, land surface mod-
eling has been utilized to study the mechanisms that drive soil moisture
deficits in the Great Plains, showing that antecedent moisture condi-
tions can have an impact on drought severity during the summer
growing season (Livneh and Hoerling, 2016). Broader studies of
drought trends over the contiguous United States show a decrease in the
percentage of dry areas from the 1950s to 1990s and an increase in the
percentage of dry areas since the 1990s (Dai, 2011). These studies de-
monstrate that regional variations in drought exist, and characterizing
large areas such as the Great Plains as a single region can produce
misleading drought metrics that are not representative of the unique
subregions that may exist. Emerging techniques provide an opportunity
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to more accurately identify and characterize the spatio-temporal
structures of regional historical drought variability.

Empirical Orthogonal Function (EOF) analysis, a multivariate sta-
tistical method first used for climatological applications in the 1950s
(Lorenz, 1956), has been utilized in diverse applications to analyze the
spatial and temporal variability of geophysical datasets (Bjornsson and
Venegas, 1997). The EOF procedure constructs orthogonal linear
combinations that explain the maximum amount of variance in both
space and time. Through various rotations of these linear combinations,
geographic regions of similar variability can be identified. Karl and
Koscielny (1982) used EOF analysis to regionalize drought across the
United States from long-term records of PDSI. Nine broad regions were
identified, and spectral analysis revealed that regions in the interior
U.S. experienced longer duration droughts. Other large- and small-scale
studies of drought EOFs have been conducted across the globe in re-
gions including China (Cai et al., 2015), Romania (Bojariu et al., 2012;
Cheval et al., 2014), Portugal (Martins et al., 2012; Santos et al., 2010),
the Iberian Peninsula (Vicente-Serrano, 2006), Turkey (Tatli and
Tiirkes, 2011), and Sicily (Bonaccorso et al., 2003). For example, Raziei
et al.,, (2010) regionalized drought across Iran into four subregions
based on the variability of the SPI at a time scale of 24 months. In these
studies, applications of EOF analysis included but were not limited to
(1) assessment of the similarities and differences amongst drought in-
dices; (2) identification of strong and weak temporal signals in the
drought time series; and (3) the separation of a region into sub-climate
regimes. While many of these studies did not explore the drought me-
trics of these EOF indices such as duration, severity, or intensity, ana-
lysis of these metrics would enhance our understanding of the space-
time variability of these intrinsic drought characteristics. Identifying
regions that share similar drought variability is important for drought
monitoring, drought mitigation planning, and drought emergency
management. Given that sub-climates can span administrative regions,
interagency cooperation could help improve drought preparedness.
These insights are crucial for drought management agencies that re-
quire detailed but concise information on changes in historical climate
for their areas.

The objective of this study was to investigate the spatial and tem-
poral variability structures of seasonal and full-record monthly drought
and wetting episodes in the Great Plains from 1901 to 2015 by iden-
tification of subregions from EOF analysis. We proposed a new EOF
selection rule to identify significant subregions of variability. The
Standardized Precipitation-Evapotranspiration Index (SPEI), a recently
developed multi-scalar drought index that includes the effects of tem-
perature variability, was chosen for this analysis as it can identify an
increase in drought severity due to higher water demand as a result of
evapotranspiration (Vicente-Serrano et al., 2010).

2. Material and methods
2.1. Study area and data source

For this study, the domain extended between latitudes +32° and
+48° and longitudes —93° and —106°, covering over 2,100,000 km? of
the central United States (Fig. 1). Monthly precipitation, temperature
(maximum and minimum), and potential evapotranspiration coverage
(0.5° x 0.5° grid) were obtained from the Climatic Research Unit TS v.
3.24.01 (CRU) at the University of East Anglia, UK (Harris et al., 2014)
for years between 1901 and 2015. A total of 891 CRU grid points were
used for the study. CRU was chosen for this analysis because its re-
solution allows for a reasonable number of grid points in the Great
Plains to perform an EOF analysis. The inclusion of areas surrounding
the Great Plains helps to avoid loss of variability and to isolate im-
portant drought features potentially hidden in a larger-scale analysis
(Richman, 1986).
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Fig. 1. (a) Study area of the U.S. Great Plains region and the Ogallala Aquifer (light blue) with black dots that illustrate selected grid points (0.5° X 0.5°), and (b)
Standardized Precipitation-Evapotranspiration Index (SPEI) for one grid point in the domain with dry (red) and wet (blue) events. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Standardized precipitation-evapotranspiration index

Potential evapotranspiration (PE) provided by CRU was estimated
using a variant of the Penman-Monteith procedure, and the difference
between precipitation and PE is calculated for each month. These dif-
ferences are summed based on the time scale chosen. Following the
procedure in Vicente-Serrano et al. (2010), these summed differences
are fitted to a three-parameter log-logistic cumulative probability dis-
tribution function, and this procedure is performed separately for each
month and grid point. These probabilities are standardized using the
approximation found in Zelan and Norman (1964) to obtain the SPEL
This index ranges in value from approximately —3 to approximately
+ 3, with negative values indicating drier than normal conditions and
positive values indicating conditions wetter than normal. SPEI values
less than —2.0 or greater than 2.0 are considered extreme. Time series
of SPEI values were calculated using tools developed at Kansas State
University. The index was calibrated using data from the period
1931-1990. A time scale of three months was used to represent short-
term drought which is more closely related to agricultural drought
(Vicente-Serrano et al., 2011). The earliest available 3-month SPEI was
March 1901. The model fit between observed summed differences of
precipitation and PE and the expected values from the fitted log-logistic
distribution was evaluated for each month using the Kolmogorov-
Smirnov test at each grid point. No test resulted in rejection of the null
hypothesis that the data come from the log-logistic distribution,

indicating that the statistical assumptions behind the SPEI are valid for
this region.

2.3. Drought metrics

Duration, severity, and intensity were used to characterize drought
and wetting events in each time series of SPEI values. The duration of a
drought event is the length of time (in months) that the drought index is
consecutively at or below a given truncation threshold. Similarly, the
duration of a wetting event is the length of time (in months) that the
drought index is at or above a given threshold. The severity of each
event is the cumulative sum of the index over the duration of the event.
The intensity of a drought or wetting event is its severity divided by its
duration and is considered the average index or ‘rating’ of that event.
To robustly investigate the significance of drought trends, a modified
Mann-Kendall test was employed (Mann, 1945; Wilks, 2011) to avoid
inflated p-values due to the underestimation of the test statistic var-
iance (Hamed and Ramachandra Rao, 1998). Then, the Theil-Sen slope
estimate was used to identify the magnitude of the trend (Theil, 1950).
The two-sample Kolmogorov-Smirnov test was implemented to test the
hypothesis that the distributions of a metric calculated from drought or
wetting events during different time periods come from the same con-
tinuous distribution (Massey, 1951). Statistical significance was as-
sessed at a level of 5% for these tests.
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2.4. Empirical orthogonal function analysis

For this study, grid point location and SPEI values were the vari-
ables and observations, respectively, for the EOF analysis. The resulting
orthogonal eigenvectors, also referred to as EOFs, point in the direction
in which the data vectors exhibit the most variability. The principal
components (PCs), which represent how EOFs evolve through time, are
obtained by projecting the EOFs onto the original SPEI data. EOFs often
exhibit characteristics that hamper their utility to isolate individual
patterns of variation, such as domain shape or size dependence
(Richman, 1986). Because weather in the Great Plains is generally
dominated by large regional atmospheric processes, the orthogonality
constraint on the eigenvectors can lead to problems with interpretation,
especially for the second and subsequent PCs (Wilks, 2011). Because of
the limitations of EOF analysis in the Great Plains, a retained number of
EOF loadings (each retained EOF scaled by the square root of its ei-
genvalue) were rotated using Varimax rotation (Kaiser, 1958;
Preisendorfer and Mobley, 1988). Varimax rotation redistributes the
variance among rotated EOFs (rEOFs) and PCs (rPCs) and attempts to
simplify the rEOFs by pushing loading coefficients toward 0 or + 1. The
loadings used for this rotation result in nonorthogonal rEOFs and rPCs
(Wilks, 2011) that are more regionally localized and highly correlated
to the original SPEI data than the unrotated EOFs and PCs.

Several selection methods are available to determine the number of
EOFs that capture most of the variability without significant loss of
information. These methods can be divided into three classes: rules
based on the size of the last retained eigenvalue (Hannachi et al., 2007),
hypothesis-testing (Preisendorfer and Mobley, 1988), and the structure
of the retained principal components (Wilks, 2011). One commonly
used selection rule is North’s Rule of Thumb (North et al., 1982) which
uses the sampling error of each eigenvalue to determine non-degenerate
EOFs. However, North’s Rule of Thumb and other selection methods
such as Kaiser’s Rule or Rule N (Overland and Preisendorfer, 1982) use
the size or sampling properties of the eigenvalues and do not ade-
quately fit the objective of this study because they do not use properties
of the EOFs after rotation. We argue that the primary utility of rEOFs in
drought analysis is their ability to identify subregions of similar
variability through time without the constraint of orthogonality and
propose that a more useful criterion is the correlation of the rPCs with
the original data. When subregions are identified with rPCs that are
highly correlated to the original data, drought characteristics can be
generalized across large land areas. As the number of EOFs rotated
increases, the number of subregions identified increases, and correla-
tion coefficients increase. At some rotation, there is no significant im-
provement in the correlation coefficients. Based on this observation, we
propose a new rule to identify the rotation at which this occurs.

2.5. Selection rule for determining the number of rotated EOFs

The selection rule begins when a selected number of leading EOFs
(N) are rotated (usually two). At each of the 891 grid points, the ori-
ginal standardized drought dataset is correlated with all N rPC time
series, using the absolute value of the correlation coefficients. For each
grid point, the rPC time series with the highest correlation is reported as
i, which is designated as an integer between 1 and N. After all grid
points have been matched with a single rPC, subregions can be iden-
tified by grouping together grid points with the same i, forming a
subregion mask. Next, N + 1 leading EOFs are independently rotated,
and the same procedure is applied when N were rotated. The subregion
mask created using N + 1 leading rPCs is projected onto the grid of
correlation coefficients that was calculated during the rotation of N
EOFs. This projection creates two samples of paired correlation coeffi-
cients corresponding to the subregions in the current and previous ro-
tation.

For each subregion j identified in the rotation of N + 1 EOFs, the
difference between the current and previous correlation coefficients
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from each rotation at each point in the subregion is calculated, and a
sign test is performed to test the null hypothesis that the distribution of
differences (D;) has zero median against the alternative that the median
is not equal to zero at a significance level of 1%. If the result of the sign
test is statistically significant, H; is recorded as,

1, median(D;) > 0
— 1, median(D;) < 0

=

If the test is not significant, H; is recorded as zero. When

;\]:11 H; > 0 there was at least one subregion that had an improvement

in the median correlation when an additional EOF was rotated. N is
incremented by one, and the procedure is repeated until the first oc-
currence when the criteria E}N:ll H; < 0 is met, indicative that the in-
clusion of an additional rEOF weakened the overall relationship be-
tween subregion rPCs and the original SPEI data. The number of
desirable rEOFs is given as N, and the procedure concludes. No statis-
tically significant gains in information were made in the subregions
identified using N + 1 rEOFs, and the subregions have become rela-
tively stable. It is important to note that there are cases when
Z}N:H,- =0 at a rotation followed by Z?’;bg > 0 when additional
rEOFs are included, which is the rational for using the criteria
Zj.v:ll H; < 0. Also, if there were N rEOFs, there might be fewer sub-
regions identified based on this correlation procedure.

After the final number of rEOFs to rotate has been decided, smooth
boundaries between subregions can be drawn by interpolating the
maximum correlations. Correlations should be presented with sub-
region boundaries to illustrate the strength of the relationship of these
rPCs with the original SPEI data. In some heterogeneous cases, non-
continuous subregions can be identified due to similarities in drought
dynamics separated at distance, and these cases should be carefully
examined when constructing a subregion mask.

The numerical magnitude and sign of the standardized rPC of each
subregion can be interpreted as a drought index that possesses statis-
tical properties similar to the input dataset (i.e., the SPEI data). Thus,
the same seasonal and full-record drought characteristics that were
calculated for the SPEI can also be calculated for the rPC, allowing for
drought and wetting event detection and statistical analysis across
spatial scales larger than a single grid point. Full-record rPCs were used
to calculate drought and wetting event durations, severities, and in-
tensities for events occurring in two periods (1901-1957 and
1958-2015) to assess changes in the distributions of drought metrics.
To assess whether seasonal drought variability has remained stationary
over time, an rEOF analysis was conducted using a fixed number of
rEOFs on a 50-year moving window (starting 1901-1950, 1902-1951,
and continuing until 1966-2015). If the total variance explained by the
rEOFs for each individual analysis stays approximately the same, then
climatic features that influence drought across the Great Plains have
remained relatively stable through time.

3. Results
3.1. Climate trends and drought statistics

CRU winter and summer growing season maximum temperature
significantly increased between 1901 and 2015 across a majority of the
northern and western High Plains (Fig. 2a(i) and a(ii)). The strongest
rates of warming (0.2-0.3 °C decade ™) occurred across the foothills of
the Rocky Mountains in New Mexico, Colorado, and Wyoming in the
summer (Fig. 2a(ii)). Spatial distribution of trends during the summer
and winter growing seasons were relatively similar, but across North
Dakota and Minnesota, trends were larger during the winter than
during the summer. During the summer season, there were also several
notable areas in the eastern Great Plains that experienced significant
decreases in maximum temperature. Minimum temperature during the
winter increased at a faster rate than during the summer (Fig. 2b(i) and
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Fig. 2. Growing season trends for (a) maximum temperature, (b) minimum
temperature, and (c) precipitation between 1901 and 2015 for (i) Nov. — Apr.
(winter) and (ii) May — Oct. (summer). Only grids with statistically significant
trends using the modified Mann-Kendall test (a = 0.05) are shaded. Grids with
non-significant trends are unshaded (i.e., white).

b(ii)), and the proportion of grid points showing a statistically sig-
nificant increasing trend was greater for minimum temperature than for
maximum temperature (Fig. 2a and b). The largest differences between
winter and summer minimum temperature trends occurred in eastern
South Dakota, North Dakota, Minnesota, and New Mexico. There was
also more significant warming in the southeast Plains over Arkansas
during the summer than the winter. These warming trends during the
summer in the southeast are in direct contrast to the cooling trends
displayed by maximum temperatures.

Spatial distributions of growing season precipitation trends for both
seasons were more variable and isolated (Fig. 2c(i) and c(ii)). Of the
grids with a statistically significant trend in precipitation, most ex-
hibited a positive trend (Fig. 2c(i) and c(ii)). Isolated areas east of the
—100° meridian during the summer increased at the highest rates, and
the rate of increase exceeded 2mm decade™! across northwest
Louisiana (Fig. 2c(ii)). During the winter growing season, a small
number of grids west of the —100° meridian had a modest decrease in
precipitation (—0.2 to —0.5 mm decade™! in Fig. 2c(i)).

When evaluated using a threshold of —0.5, the 3-month SPEI data
revealed that there were on average 143 droughts per grid point (ap-
proximately 1.2 times per year in the Great Plains) with a standard
deviation of 8.8 in the Great Plains between 1901 and 2015. When the
period was divided into three time intervals of equal duration excluding
1901 (1902-1939, 1940-1977, and 1978-2015), the average number
of drought events per grid point was approximately 48, 49, and 41,
respectively. Notably the last 38 years had significantly fewer drought
events than the previous two periods, which was offset by an increase in
the number of wet events using a threshold of 0.5 (53 wet events for
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Fig. 3. (a) Empirical cumulative frequency distributions for Standardized
Precipitation-Evapotranspiration Index drought event intensities across the
entire study area for three periods: 1902-1939, 1940-1977, and 1978-2015.
Drought events were grouped based on the month each drought event termi-
nated. (b) Cumulative frequency distribution magnified near the extreme
drought boundary.

1978-2015 vs. 48 for 1902-1939). Empirical cumulative frequency
distributions (ECFD) of SPEI drought event intensities for these three
time intervals are shown in Fig. 3a. The two-sample Kolmogorov-
Smirnov test was statistically significant for all pairwise comparisons
(p-values < 107°). These distributions demonstrate that of the
drought events that occurred between 1978 and 2015, moderate, se-
vere, and extreme drought events occurred at a higher frequency than
in previous periods. While the number of drought events decreased in
recent years, the intensity of those events increased. Divergence be-
tween time interval ECFDs is evident beginning at intensities of around
—1.75, reaching maximum separation around the transition between
severe and moderate drought categories.

All three time intervals had less than 10% of all droughts rated
severe or extreme, and 35-40% of all drought events were rated as
moderate. Notice that 0.18%, 0.09%, and 0.50% of all drought events
are categorized as extreme for the periods 1902-1939, 1940-1977, and
1978-2015, respectively (Fig. 3b). In context of the study area and the
number of events per period, roughly 21% of grids experienced a
drought event that rated on average as extreme between 1978 and 2015
while only 4% did between 1902 and 1939. Combining the information
contained across all grid points shows the overall status of the Great
Plains; however, more relevant information can be acquired by ana-
lyzing the drought and wetting dynamics contained in subregions that
contain distinctive information about drought variability.

3.2. Seasonal rEOFs

3.2.1. Spring and summer

Thirteen EOFs were selected for rotation using spring SPEI, resulting
in 10 subregions of similar drought variability that explain about 85%
of the total drought variability (Fig. 4a). Correlation coefficients of rPCs
with the original SPEI data for grid points within subregions were
generally greater than 0.75. These subregions span administrative units
and political boundaries. For example, subregion 1, which covers most
of central and western Kansas, also includes an extension of land in
interior southern Colorado (east of subregion 7 in Colorado and
northern New Mexico). It should be noted that the overall correlation in
this area of Colorado comparatively lower, and it may be the result of
high variability or it possessing characteristics more in common with
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areas west of the study domain. The area along subregional boundaries
in western South Dakota demonstrate low correlation (r < 0.75), il-
lustrating that the variability exhibited in these areas is not explained as
well as other areas in the domain using this procedure.

The spring rPC time series demonstrate clear differences between
subregion seasonal drought and wet spell onsets, durations, and seve-
rities (Fig. 4b). The time series also highlight periods when subregions
experienced similar drought conditions (e.g., drought between 1960
and 1980). Based on severity and duration, subregion 9 centered on
eastern Kansas and Missouri experienced the longest period of sustained
extreme spring drought during the 1960s. Spring droughts occurring
during the 1960s and 1970s appear to have had somewhat larger areal
coverage as evident by the red bands across most subregions in Fig. 4b.
The 2011-2012 springtime drought was the worst (fPC < —2) for
subregion 4 in the Texas Panhandle. Overall, each time series shows its
own unique drought characteristics with differences in onset, duration,
and intensity of spring drought events.

Fourteen EOFs were selected for rotation using summer SPEI data,
resulting in 9 subregions of similar drought variability that explain
about 82% of the total drought variability (Fig. 4c). All subregions have
at least one grid point with a correlation coefficient of 0.75 or greater,
and the area in central Colorado (subregion 7) demonstrates a much
stronger relationship with its rPC than subregion 7 in spring (Fig. 4a).
The orientation of subregions is notably different in the summer than
during the spring (Fig. 4a and c). There is a nearly vertical axis at about
the —100° meridian that extends from the southern portion of the study
domain into central Nebraska.

For most of the Great Plains, summer drought in the 1930s (Fig. 4d)
was notably extreme and had much higher regional coverage than
spring drought. The Dust Bowl era of the 1930s contained some of the
driest and hottest growing seasons in modern U.S. history, which would
have had significant negative impacts on crop production (Glotter and
Elliott, 2016). Subregions across Kansas and northward showed the
most extreme decadal drought conditions during this time. Summer
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correlation coefficients for each subregion’s rPC
time series on the right and the original drought
4105 dataset at individual grid points. The right color
bar represents the magnitude and sign of each
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drought conditions between 2005 and 2015 were notably drier for
subregions 1, 2, 5, and 7 extending across the High Plains.

3.2.2. Fall and winter

Fifteen EOFs were selected for rotation using fall SPEI data, re-
sulting in 12 subregions of similar drought variability that explain
about 85% of the total original drought variability (Fig. 5a). The or-
ientation of subregions resembles the orientation for spring rEOFs
(Fig. 4a) with boundaries angled towards the northeast. There are
correlation coefficients greater than 0.75 within all subregions except
subregion 9, which is located along the Minnesota and Iowa border.
This area exhibits lower correlation during fall than spring or summer.
Other areas exhibiting low correlation were in south central Nebraska
and north central Kansas. The rPCs for each subregion demonstrate that
the multi-decadal period starting in 1940 and ending during the early
1960s was notably dry (Fig. 5b), while 1970s fall conditions were
overall wet with the most notable drought occurring in subregions 1
and 8 in the mid-1980s.

Eighteen EOFs were selected for rotation using winter SPEI data,
resulting in 10 subregions of similar drought variability that explain
about 88% of the total original drought variability (Fig. 5c). The sub-
regions constructed in the southern plains are quite large compared to
those for spring, summer, and fall. Notably there is one that spans
across most of the portion of Texas within the study domain (subregion
1). This is significant because for the other seasons, the area of the
domain that includes Texas is divided across the low rolling plains.
Additionally, subregion 4 dominates most of Kansas, southeast Ne-
braska, and Iowa. These large subregions also demonstrate strong cor-
relation, highlighting the broad and homogenous influence of synoptic
features during the winter in the southern plains. Drought planners may
be able to consolidate resources when assessing winter mitigation
strategies. The area that demonstrates the most variability lies across
Colorado and Minnesota. Upon examination of the rPC time series, the
period between 1960 and 1980 was notably the driest for most
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Fig. 5. Same as Fig. 4 but for (top) fall and (bottom) winter.

subregions (Fig. 5d). Subregion 6 across western South Dakota in the
northern Great Plains experienced the longest duration of extreme
decadal drought of any region during the late-1950s and early-1960s,
followed closely by subregion 1 during the mid to late-1950s.

3.2.3. Seasonal trends

For springtime drought conditions, subregion 6 in north central
Nebraska had a statistically significant trend of 0.061PC decade™ '
(Fig. 6a). During the summer, subregion 8 across eastern Nebraska and
Towa had a statistically significant trend of 0.09 rPC decade ~* (Fig. 6b).
Trends during the fall and winter showed the strongest statistical evi-
dence among all seasons (Fig. 6¢ and d). Subregions 3 (centered on
southern Colorado), 4 (centered on Minnesota), 7 (centered on eastern
Texas), and 11 (centered on southeast South Dakota) demonstrated
significant wetting trends of 0.06, 0.06, 0.08, and 0.09 rPC decade ™!
during the fall, respectively (Fig. 6¢). Winter subregions 5, 6, and 9 also
demonstrated statistically significant wetting trends of 0.07, 0.06, and
0.16 rPC decade ~ !, respectively, and all three are separated at distance
across the domain and demonstrate no clear spatial pattern (Fig. 6d). As
a whole, seasonal trend analysis showed that either some regions in the
Great Plains have trended towards wetter conditions since 1901, or
they do not have significant trend values. However, it is interesting to
note that some areas across the Great Plains were characterized by
temporal trends that were positive and negative in different seasons.
For example, areas in northwest Nebraska demonstrated wetting and
drying in winter (subregion 6) and spring (subregion 5), respectively.
These results emphasize the importance of seasonal analysis which has
major implications for the agricultural community who depend on
timely rainfall during different growing seasons.

3.3. Full-record rEOFs

Fourteen EOFs were selected for rotation when using the full-record

PC dec™!
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Fig. 6. Theil-Sen slope estimates for the rPCs associated with the subregions in
Figs. 4 and 5 for (a) spring, (b) summer, (c) fall, and (d) winter. Subregions with
a * indicate statistical significance (a = 0.05) determined using the modified
Mann-Kendall test.

SPEI data resulting in 10 subregions of similar drought variability that
explain about 87% of the total drought variability (Fig. 7a). All rPCs
(excluding 9) for each subregion are highly correlated to the original
SPEI data (r > 0.85). Spatially, the correlation matrix illustrated that
the rPCs for most subregions in the Great Plains were significantly
correlated (0.05 < r < 0.7) (Fig. 7b). The two pairs of subregions that
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Fig. 7. (a) Subregions identified for full-record Standardized Precipitation-Evapotranspiration Index (SPEI) and (b) the correlation coefficients between subregion

rPC time series.

have the strongest relationship are 2 and 7 and 5 and 8
(0.6 < r=<0.7). In contrast, subregions 4 and 7 across the southern
Ogallala Aquifer and Minnesota, respectively, have non-significant
correlations. The SPEI drought conditions of subregions 4 and 7 act
independently. This demonstrates that summarizing the short-term
drought variability of the Great Plains as a single region would be a
mischaracterization of the complexities that exist in this region, parti-
cularly across the southern High Plains and northern Great Plains.

For each subregion’s full-record rPC, distributions of drought events
and corresponding metrics were calculated using thresholds of —0.5,
—1.0, —1.5, and —2.0 for the periods before and after 1958. Likewise,
distributions of wet events were calculated using thresholds of 0.5, 1.0,
1.5, and 2.0. The distributions for the thresholds of —0.5 and 0.5 and
results of the two-sample Kolmogorov-Smirnov test are presented in
Fig. 8. There is no statistical evidence for changes in drought metric
distributions between these two periods at this threshold (Fig. 8a). In
contrast, there is evidence of a distribution shift towards more severe

(a) (b)

(p-value: 0.04) and intense (p-value: 0.01) wet events between 1958
and 2015 across Minnesota in subregion 7 (Fig. 8b).

At thresholds less than —0.5 and greater than 0.5 (results not
shown), only a few subregions had statistically significant changes in
distributions for drought event metrics. Differences in drought event
intensities between the two periods for subregion 2 at a threshold of
—1.0 were statistically significant (p-value: 0.02). This is an indication
that the intensity of moderate drought events increased during
1958-2015 across western North Dakota, South Dakota, and eastern
Montana. At a threshold of —1.5, the intensities of drought events in
subregion 8 were statistically significant, indicating an increase in
drought event intensity during 1958-2015 (p-value: 0.04).

3.4. Temporal changes in drought variability

To examine temporal changes in drought variability, ten leading
rEOFs were retained for this analysis based on the number of subregions

Fig. 8. Violin plots of (a) drought and (b) wet
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Fig. 9. The seasonal variances explained by 10 EOFs using a 50-year moving
window for the U.S. Great Plains from 1901 to 2015. The x-axis labels (year)
indicate the end year of each moving window in the EOF analysis (e.g., 1960
corresponds to 1911-1960). Lower variance explained corresponds to a higher
complexity in the spatial-temporal drought features during that period, whereas
higher variance corresponds to lower complexity.

identified previously, and a 50-year moving window starting from 1901
was used to calculate the total variance explained for each window. A
decrease in the amount of variance explained by the same number of
rEOFs is an indication that the space-time variability of drought in-
creased because more rEOFs must be retained to explain the same
proportion of variability. Fig. 9 shows how the total variance explained
by 10 rEOFs has changed over time by season. The variance explained
by summer rEOFs changed significantly between the periods
1932-1981 and 1937-1986, decreasing from 82% to almost 80%
within a period of several years. However, it steadily rebounded be-
tween 1941-1990 and 1966-2015. The variance explained by fall
rEOFs steadily increased and decreased over the period, demonstrating
little overall differences. One explanation for the increasing variability
is the change in coverage of major drought and wetting events. Results
from the seasonal rEOF time series showed that persistent and wide-
spread droughts (e.g., in the 1930s and mid-to-late 1950s) affecting
most subregions occurred less frequently in the latter half of the
twentieth century. Subregions experienced more localized drought and
wetting events of variable duration, severity, and intensity, increasing
the space-time variability in EOF analysis. The sharp rebound starting
around 1961-2010 during the summer was most likely due to the major
drought event between 2011 and 2012, which had substantial coverage
across most of the Great Plains. If historical trends continue, and sea-
sonal drought becomes more variable, a more diverse set of resources
and strategies may be required to deal with its impacts.

Overall, winter and spring showed an increase in variance explained
by the rEOFs while the summer drought has become more complicated
(i.e. more difficult to explain) in terms of variability (Fig. 9). Temporal
variations of drought variability explained for the winter season were
relatively smaller than those in other seasons, indicating that the effects
of climatic structures that drive drought variability changed less rapidly
year-to-year in winter. Thus, this suggests that spatially, the effects of
drought and wetting events became more homogenous. Should this
homogeneity continue among winter events across the Great Plains,
there is the potential for resource managers to consolidate resources to
mitigate impacts. However, when drought or wetting events do occur,
their impacts could be more widespread.
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4. Discussion

Our results showed that temperatures have significantly increased
for a large portion of the Great Plains during the summer and winter
growing seasons while trends in precipitation have significantly
changed for only isolated areas of the Great Plains (Fig. 2). The seasonal
rPC trends from EOF analysis demonstrated that only some subregions
experienced statistically significant changes in drought conditions, and
the rPC trends more closely resembled the patterns displayed by the
precipitation trends than the temperature trends. While much of the
western Great Plains demonstrated statistically significant trends in
temperature (Fig. 2a and b), only a few grid points had statistically
significant precipitation trends (Fig. 2c). In the EOF analysis, the rPC
trends of seasonal subregions in the western Great Plains were also not
significant. Many areas in the eastern Great Plains that demonstrated
positive trends in precipitation (Fig. 2c) also demonstrated significant
wetting in the EOF analysis (Fig. 6). It is apparent that the warming that
occurred in the western Great Plains did not significantly change the
monthly differences between precipitation and PE that are inputted into
the SPEI calculation, emphasizing that precipitation is most likely the
dominant driver of SPEI variability in the Great Plains, which is similar
to the results from previous work (Livneh and Hoerling, 2016). Trend
analysis also highlighted that some subregions covering similar areas
demonstrated both drying and wetting trends depending on the season
analyzed. Based on these results, we contend that analysis of the sea-
sonal rPC trends instead of the full-record rPC trends has more practical
implications for agriculture because full-record analysis can mask sea-
sonal trends that are diametrically opposed, which would be misleading
for crop producers. While previous drought EOF studies have focused
more on the full drought record than the seasonal drought record, we
argue that drought analysis should, where possible, be conducted sea-
sonally to truly understand the complexity of drought dynamics.

An important caveat to acknowledge is that the trends calculated in
this study may have been slightly different if another gridded dataset
product was chosen for analysis. Because gridded datasets process
station observations differently, it is important to consider the un-
certainties in trends that result from the methodology used in dataset
construction (Wang et al., 2017). For example, CRU TS datasets are
constructed using the Climate Anomaly Method (Peterson et al., 1998),
which requires station data to meet a minimum number of observations
for observed climatology. At each time step, available observation
anomalies are gridded to 0.5° X 0.5° resolution using triangulated
linear interpolation, which are converted to absolute values using the
1961-1990 climatology (Harris et al., 2014). Analysis of temperature
trends over the period 1901-2015 (not shown) demonstrated relatively
good spatial agreement among other higher resolution datasets such as
the Parameter-Elevation Regressions on Independent Slopes Model
(PRISM) (Di Luzio et al., 2008) and VOSE (Vose et al., 2014). Notably
maximum temperature trends calculated from PRISM exhibited a
higher coverage of grid points with significant decreases in temperature
in the eastern areas of the Great Plains. PRISM does not adjust for
changes in instrumentation (Wang et al., 2017), which may explain
discrepancies among products. Precipitation trends among CRU,
PRISM, VOSE, and Global Precipitation Climatology Centre (GPCC)
exhibited much stronger agreement than minimum and maximum
temperature.

There have been several proposed explanations for the observed
wetting trends in the Great Plains and Midwest. Some studies suggest
that widespread expansion of irrigation and cropland that occurred
during the 1950s enhanced summer precipitation by increasing atmo-
spheric moisture and moisture convergence (Alter et al., 2015; Alter
et al., 2017). Other research suggests that the variability of the Great
Plains low-level may have played a role in the alteration of precipita-
tion patterns (Wang and Chen, 2009). Rising temperatures resulting
from an increase in global greenhouse concentrations have also been
linked to an increase in atmospheric water vapor across areas of the
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Great Plains, leading to an increase in the frequency of heavier rainfall
events (Groisman et al., 2004; Villarini et al., 2012). While our study
cannot directly explain the trends we observed, our results fit well
within the current literature for this region. Although not explored in
great detail, dividing the entire period of record into smaller moving
windows, performing the EOF analysis, and examining changes in
subregion patterns through time may provide insight into changes in
synoptic structures that have dominated the Great Plains since instru-
mental records began.

Seasonal EOF analysis also demonstrated differences in the spatial
patterns of the subregions. This is additional evidence for conducting
seasonal EOF analysis because it provides insight into the different
processes that dominate seasonal drought variability in the Great
Plains. These processes were more apparent during the rotation of se-
lected EOFs. Rotation of two leading EOFs demonstrated that the
dominant seasonal subregions of drought variability in the Great Plains
occur in the northern and southern plains. This division may be phy-
sically explained by the relative influence of sea surface temperatures in
the Pacific Ocean for these two regions. Previous studies have found
that drought variability in the southern Great Plains is more sensitive to
changes in equatorial Pacific sea surface temperatures than drought
variability exhibited in the northern Great Plains, which may respond
greater to internal atmospheric variability (Hoerling et al., 2009).
Warming and cooling of the sea surface temperatures in the Pacific
Ocean can generate changes in the prevailing circulation patterns that
transport moisture from this source region (Borchert, 1950). Rotation of
three EOFs divided the previously identified subregions into areas that
resemble the synoptic structures that dominate weather. For example,
during the summer in the southern plains, subregions are sharply di-
vided at the —100° meridian, representing the western boundary of the
northward transport of gulf moisture by the low-level jet in the eastern
Great Plains. For the winter season, subregions have boundaries that
resemble synoptic fronts, which result from the cyclonic movement of
air masses across the Great Plains. These physical modes of variability
exhibited by the differences in seasonal synoptic structures provide a
physical explanation of the subregion patterns in the EOF analysis.

Based on the total amount of drought variability in the Great Plains,
the selection rule proposed in this study identified 9-12 subregions.
Compared to the Karl and Koscielny (1982) study, the number of sub-
regions identified in our analysis for the Great Plains was equal to or
larger than the nine identified for the entire United States. However, the
authors in that study chose the number of EOFs to retain for rotation
based on the original resolution of the dataset, which included only 60
grid points across the entire U.S. In addition, none of the subregions had
rPCs that were strongly correlated with drought data in the central
Great Plains. Other studies in areas outside the U.S. used North’s Rule to
identify the number of EOFs to retain for rotation and then constructed
subregions using cluster analysis or examination of the coefficients of
the rEOFs (Cai et al., 2015; Raziei et al., 2010). We identified six to
seven seasonal subregions using North’s Rule in the Great Plains, which
was less than the number identified using our selection rule. However,
the correlation coefficients across subregions using North’s Rule were
lower, particularly in the areas identified in our analysis along sub-
region boundaries. Our rule could identify subregions across these areas
that significantly improved correlation with the original data across
most of the Great Plains. Analysis of the statistical properties of the rPCs
in this study also demonstrated that the subregions had unique char-
acteristics, such as different drought or wetting trends, providing strong
evidence for their inclusion in drought monitoring. Because the selec-
tion rule proposed in this study tests the differences in correlation
coefficients within subregions in sequential rotations, we argue that
they represent the best subregions of drought variability that can be
obtained by EOF analysis. This was exhibited by the high correlation of
the rPCs with the original SPEI data. Areas that consistently had lower
correlations such as Colorado indicate that dimensional reduction of
drought variability in this region was difficult to achieve, which may be
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expected given that this area represents a high degree of precipitation
variability that results from the orographic lift of the Rocky Mountains
that may not be represented adequately at the resolution of the CRU
dataset. Because drought indices are usually standardized, the rPCs can
be interpreted as a meaningful drought index, which has numerous
advantages when the goal is to proceed beyond subregion identifica-
tion. Highly correlated drought rPCs for identified subregions can be
examined for detection of climate change signals, which has implica-
tions for drought management due to the information gain over a large
area.

The design and properties of the selection rule in this study make
the rule adaptable to different applications of drought monitoring or
other dimension reductions of space-time geophysical data. We re-
cognize that statistical tests other than the sign test could be utilized to
determine improvements in the subregion correlation coefficients.
Other tests that examine characteristics of a distribution other than the
median might provide further insight into identifiable subregions, al-
though the characteristics of those distributions would need to be ex-
amined to ensure that test assumptions are reasonably satisfied. Manual
adjustments may also be desired if any subregions identified do not add
useful information. Without implementation of the sign test, the upper-
limit of the number of identified subregions using all 891 EOFs for
rotation was approximately 18-20. The small, additional subregions
extended across areas with low correlation in the seasonal analysis.
However, the correlation coefficients between those rPCs and the ori-
ginal SPEI data were still smaller than the coefficients for the main
subregions and explains why they were excluded in this analysis using
our selection rule. The selection rule is also relatively robust to changes
in the size of the domain. Increasing the domain size can change re-
gional features along the domain boundary, and reconstructing the
regional patterns produced using the smaller domain generally requires
a larger number of rEOFs because additional variability is introduced.
These properties make it suitable for applications in other areas of the
world at larger and smaller spatial scales to identify subregions of
variability of a geophysical variable through time. Because of the
properties demonstrated by this selection rule and its ability to identify
subregions that have physical basis in the synoptic structures that drive
drought variability, we argue that future drought management strate-
gies and planning would be more advantageous in terms of these sub-
regions.

5. Summary and conclusions

There has been an increase in growing season maximum and
minimum temperatures across many areas of the Great Plains between
1901 and 2015. The greatest increases in growing season precipitation
have been isolated to areas primarily east of the —100° meridian.
Three-month SPEI drought event intensities increased in magnitude
during the period 1978-2015 across the Great Plains although the
number of events was lower compared to previous periods. Higher in-
tensity droughts, while less frequent, will have negative impacts on
agriculture as short-term and large water deficits occur in critical stages
of crop growth. In contrast, the number of total wet events has risen in
recent years, indicating an increased risk of excess moisture that may
have major impacts on agriculture in the future.

Rotated EOF analysis using our selection rule identifies the main
subregions of variability in the Great Plains and can be used to integrate
drought monitoring information and inform drought management de-
cisions at a local scale, especially when there are not sufficient in-situ
climate stations. Our method produces subregions that are consistent
with synoptic features and can be easily interpreted by drought man-
agement agencies. It has been shown that the number and spatial extent
of subregions changes by season, reflecting the meteorological pro-
cesses that dominate drought variability. Seasonal trends showed sig-
nificant wetting for several subregions, and there is statistical evidence
that the distributions of drought and wetting events for a few
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subregions have changed between 1901-1957 and 1958-2015.

Changes in weather patterns both naturally and from the diverse set
of human forcings (Council, 2005; Pielke et al., 2007) have the po-
tential to alter the dominant features that affect drought variability in
the Great Plains. The water resource community is considering the need
to include changes in weather patterns from what occurred in the past
to inform future management practices (Hossain et al., 2015). Analysis
showed that drought variability was not stationary over the historical
period. There is evidence of increased space-time drought variability
since 1980 or later during the summer and decreased variability during
the winter. Decision makers should interpret these changes in varia-
bility as an increase or decrease in the spatial drought complexities. If
drought and wetting events become more variable across space and
time, greater interregional cooperation will be desirable to accom-
modate for the wide-range of potential impacts. Decision makers in the
Great Plains that have an understanding of these trends in variability
will be able to adjust long-term resource management strategies that
may help mitigate the economic and agricultural impacts throughout
the twenty-first century.
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