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Abstract. Over the span of 50 years, the pioneering study of Lorenz using a three-

dimensional (Lorenz) model (3DLM) in 1963 and follow-up studies in 1969 and 1972 have 

changed our view on the predictability of weather and climate by revealing the so-called 

butterfly effect. Although Lorenz’s ‘63 and ‘72 studies emphasized nonlinear dynamics, 

researchers often apply a “simple” conceptual model that contains a monotonic positive 

feedback instead of time-varying (positive or negative) nonlinear feedback in order to 

understand the characteristics of nonlinear solutions within the 3DLM. In this study, we: 

(1) define butterfly effects of the first and second kinds in order to indicate the sensitive 

dependence of solutions on initial conditions, and the hypothesized enabling role of tiny 

perturbations in producing an organized large-scale system (e.g., a tornado), respectively; 

(2) illustrate important but overlooked features (i.e., the boundedness and recurrence of 

solutions within the 3DLM); (3) present examples to illustrate common misunderstandings 

regarding butterfly effects and explain the fundamental differences between the two kinds 

of butterfly effects; (4) illustrate the fundamental role of nonlinearity in creating oscillatory 

components with incommensurate frequencies, transferring energy across scales, and 

providing negative or positive feedbacks; (5) discuss various types of solutions (e.g., 

chaotic, linearly unstable, and/or nonlinear oscillatory solutions) in Lorenz models; and 

(6) propose that the entirety of weather is a superset that consists of both chaotic and non-

chaotic processes. Depending on the time-varying collective impact of heating, 

dissipations, and nonlinearity, specific weather systems may appear on a chaotic or non-

chaotic orbit for a finite period of time. 

 

1  Introduction 
 

The discovery of a “butterfly effect” within a three-dimensional nonlinear Lorenz 

model (3DLM, Lorenz 1963) changed our view on the predictability of weather 

and climate. While a long history exists regarding when and how the term 

butterfly effect was first introduced, as suggested in the book entitled The Essence 



of Chaos by Lorenz in 1993, the term appeared to obtain noticeable attention after 

Lorenz’s studies in 1963 and 1972 (Lorenz 1963, 1972). By conducting a 

comprehensive literature review, we illustrate that the current meaning of the 

butterfly effect and its major characteristics is not exactly the same as proposed 

by Lorenz in his studies of Lorenz (1963, 1972). Additionally, although Lorenz 

(1963, 1972) emphasized nonlinear dynamics (i.e., chaotic dynamics), 

researchers often apply a “simple” conceptual model that contains a monotonic 

positive feedback instead of time-varying (positive or negative) nonlinear 

feedback in order to understand the characteristics of nonlinear solutions within 

Lorenz models. Outstanding questions and issues remain from Lorenz’s original 

studies (Lorenz 1963, 1972), for example: (1) we still need to properly interpret 

Lorenz’s studies in order to improve our understanding of butterfly effect(s), (2) 

we need to understand the nature of the relationship between butterfly effects in 

these two studies, and (3) we need to know what role nonlinear processes play 

within Lorenz models. 

In this study, we provide a brief review and a summary of our recent studies 

using newly developed high-dimensional LMs (Shen 2014, 2015a, b, 2016, 2017; 

Shen et al., 2018b). We first define and discuss butterfly effects of the first and 

second kinds (BE1 and BE2) in Lorenz’s studies (1963, 1972).  Within the BE1, 

we illustrate important, but overlooked features of the butterfly pattern solution.  

We then analyze the Lorenz (1969) model in order to show the necessary 

conditions for BE2. As suggested by the recent studies of Palmer et al. (2014) and 

Durran and Gingrich (2014), as well as Rotunno and Snyder (2008), Lorenz 

(1969) may be the first attempt at proposing a multiscale system for “revealing” 

features that are “associated with” the BE2. 

 

The BE1 in Lorenz (1963) 

 

Based on the pioneering Lorenz study in 1963, the original meaning (or 

“definition”) of the butterfly effect is a “sensitive dependence of solutions on 

initial conditions (ICs)”, suggesting that a tiny change in an IC can produce a very 

different time evolution of a solution for three variables (X, Y, Z). These variables 

represent the amplitudes of either stream functions or temperatures and describe 

an orbit or trajectory within the phase space. The dimension of the phase space is 

equal to the number of variables. For example, three, five, and seven dimensional 

Lorenz models (3D, 5D, and 7DLM) include three, five, and seven variables, 

respectively (e.g., Shen 2014, 2016, 2017). The term “dimension” is 

conventionally used for ordinary differential equations (ODEs, e.g., Hirsch et al. 

2013; Thompson and Stewart 2002). In this study, the 5D and 7DLM are referred 

to as high-dimensional Lorenz models. In existing literature, they are often 

referred to as high-order Lorenz models (e.g., Moon et al. 2017).  

The sensitive dependence of solutions on ICs has been illustrated using the 

divergence of two, initial, nearby trajectories within the phase space of the 3DLM. 

For example, using the model with typical parameters (e.g., the Rayleigh 

parameter r = 28, to be discussed in Eqs. (A1)-(A3) in Appendix A), Figures 1(a)-

1(c) display a very different time evolution for two solution orbits whose starting 



points are very close to one another.  In addition to the divergence of nearby 

trajectories, the solutions or orbits are bounded. Partly due to its geometric pattern 

within the phase space (e.g., Figure 2a of this study or Figure 2 of Lorenz 1993), 

this phenomenon was originally used to define the butterfly effect (i.e., the BE1). 

A butterfly pattern with a finite size and varying curvatures within the phase space 

(as shown in Figure 2a) also qualitatively suggests important features of solution 

boundedness. For such a system, the error (or divergence) of two orbits should be 

bounded (e.g., Figure 1d). 

The average separation speed (i.e., an average divergence) of nearby 

trajectories has been quantitatively measured using the Lyapunov exponent (LE, 

Wolf et al. 1985; Zeng et al. 1991, 1993). A positive LE suggests an exponential 

rate in the separation of two nearby trajectories over a long period. The 3DLM 

and high-dimensional LMs have a positive LE within a range of parameters.  

Therefore, both a positive LE and solution boundedness are used to define a 

chaotic system. Although not correct, since the LE is computed over an infinite 

period of time, researchers often misinterpret the divergence of two trajectories 

associated with a positive LE within the 3DLM as continuing over time and 

lasting forever. Due to solution boundedness, a trajectory should recurve within 

the phase space. Therefore, time-varying (local) growth rates along a chaotic orbit 

are observed (e.g., Zeng et al. 1993) and may become negative, as indicated by a 

negative finite time LE (e.g., Figure 7 of Nese 1989; Figure 1 of Eckhardt and 

Yao 1993; p. 397 of Ding and Li 2007; Figure 3 of Bailey 2011). When a 

trajectory returns back to the neighborhood of a previously visited state, 

“recurrence” is defined.  Recurrence may be viewed as a generalization of 

“periodicity” that braces quasi-periodicity and chaos (Thompson and Stewart 

2002) and may appear as a result of solution divergence (with a positive LE), 

boundedness, and recurvature. Specifically, recurrence is an essential ingredient1 

for the irregular oscillations of a strange attractor. A chaotic system has been 

stated to possess an infinite number of unstable periodic solutions (Mirus and 

Sprott, 1999). 

In reality, the term butterfly flaps should indicate very small amplitudes of 

flaps at tiny temporal (for a short-term period) and spatial scales (with a small 

size). In particular, tiny scales are the scales of real butterflies or sea gulls (p. 15 

of Lorenz 1993).  However, as a result of the limited degree of spatial scale 

interactions with three modes, it can be said that the 3DLM reveals the 

complexities of the solution only within the temporal space. While the word 

butterfly for the BE1 indeed represents the pattern of the solution that consists of 

all possible outcomes of the system, the BE1 emphasizes the various time 

sequence of outcomes, a very unique feature of the system.  A tiny perturbation 

in the initial conditions at one of the selected spatial scales (e.g., a perturbation, 

𝜖, in the state variable Y in Figure 1) is often viewed as a butterfly flap. Such a 

perturbation can only modify the time sequence of various events within the 

                                                 
1 The characteristics of solution recurrence can be found in the definitions of 

chaos of Devaney (1989): (1) sensitivity to initial conditions; (2) topological 

transitivity; and (3) dense periodic points.  



deterministic Lorenz system (e.g., Lorenz 1993). Note that such tiny perturbations 

within the 3DLM do not hold realistic amplitudes or the temporal or spatial scales 

required to represent real butterflies.  If proper rescaling is applied to represent 

butterflies within a 3DLM that only has three scales, a flap by a butterfly can 

change its journey but cannot make changes on other events that have scales 

different from the three pre-selected scales. Stated alternatively, the solution of 

the 3DLM is sensitive to an interior change (in ICs). Note that a change in system 

parameters is an external change. Therefore, while the 3DLM can be used to 

define the BE1, it is not a proper model for addressing the BE2 that requires scale 

interactions at multiple spatial scales (i.e., many modes are required).  Table 1 

summarizes major features of the 3DLM and the BE1.  

 

The BE2 in Lorenz (1972) 

 

Here, we use the BE2 to indicate the enabling role of a tiny perturbation in 

producing an organized large-scale system (e.g., a tornado). Note that the 

definition of BE2 requires interactions at various (physical) spatial scales (e.g., 

the butterfly and the tornado) and energy transferring across scales (e.g., 

intermediate scales between the scales of a butterfly and a tornado). The BE2 was 

originally discussed by Lorenz (1972) who raised the following three, and only 

three, questions:  

1. Predictability; Does the Flap of a Butterfly's Wings in Brazil Set Off a 

Tornado in Texas? 

2. In more technical language, is the behavior of the atmosphere unstable 

with respect to perturbations of small amplitude? 

3. How can we determine whether the atmosphere is unstable? 

Simply speaking, Lorenz addressed the first question (regarding the BE2) by 

answering the second and third questions. He specifically linked the BE2 with the 

release of instability by the atmosphere and the capability of transferring energy 

by tiny perturbations. In recognition of the limited size of a butterfly and the 

limited performance of numerical methods in transferring the butterfly’s 

influence across different regions, as discussed in Section 2, Lorenz stated:  

• One hypothesis, unconfirmed, is that the influence of a butterfly’s wings 

will spread in turbulent air, but not in calm air; 

• We must therefore leave our original question (i.e., the first question) 

unanswered for a few more years, even while affirming our faith in the 

instability of the atmosphere (i.e., the second and third questions).  

The above suggests that the impact of a butterfly heavily depends on the 

instability of the atmosphere2. However, the presentation of Lorenz (1972) did 

not provide a mathematical model for addressing the source of instability and the 

                                                 
2 It should be noted that the term “chaos” was introduced into nonlinear 

dynamics by the study of Li and Yorke in 1975. Therefore, detailed differences 

between instability and chaos have been discussed since that time. See an 

example in Appendix.  



transference of perturbations across scales. A butterfly’s ability in creating an 

organized weather system was also not addressed.  

As suggested by recent studies, (some) major features for the BE2 were first 

addressed using the Lorenz (1969) model. Lorenz (1969) used a simple partial 

differential equation (PDE) with a nonlinear advection term that describes the 

evolution of vorticity.  A PDE is an equation that involves partial derivatives in 

both time and space. A common approach is to convert a PDE into a set of ODEs 

in order to understand fundamental physical processes. By applying a 

linearization method (Hartman 1963) using a basic state that possesses a realistic 

spectrum (i.e., realistic amplitudes over a range of spatial scales), Lorenz (1969) 

transformed the PDE into a set of linear ODEs in order to describe the time change 

of “perturbations” (i.e., departures from the basic state) at different spatial scales. 

An initial condition of the perturbation may be viewed as a butterfly’s flap, while 

the basic state represents the atmosphere. Major findings are briefly discussed 

below, while details of the mathematical approaches and numerical experiments 

are provided in the Supplemental Materials3 of Shen et al. (2018a, in preparation).  

The spread and growth of initial perturbations at various scales were 

discussed. The dependence of growth rates on spatial scales (i.e., wavelengths) 

was illustrated and growth rates were used to estimate predictability. As a result 

of smaller growth rates, larger-scale systems were presumed to have better 

predictability. A predictability limit of several weeks4 was suggested (e.g., Lewis, 

2005; p. R139 of Palmer et al. 2014). Major findings in Lorenz (1969) have been 

supported in studies conducted near the time of Lorenz’s 1969 publication (e.g., 

Leith and Kraichnan 1972) and in recent studies using more sophisticated PDEs 

(e.g., Rotunno and Snyder 2008; Durran and Gingrich 2014). We provide a 

summary of the Lorenz (1969) model in Table 1.  After introducing the concept 

of “multiscale” using our high-dimensional LMs, we will provide detailed 

comments as to whether the 1969 model is good for addressing BE2 (as well as 

BE1) in Section 2.  

Up to this point, we have defined the BE1 and BE2 and discussed other 

important but overlooked features in chaotic solutions. In Section 2, we present 

examples in order to discuss common misunderstandings regarding the butterfly 

effect and identify a nonlinear feedback loop (NFL) and its extensions in order to 

address the source of recurrence and negative (positive) feedbacks for suppressing 

(enhancing) chaos using high-dimensional LMs (Shen 2014, 2015a,b, 2016; Shen 

and Faghih-Naini 2017; Moon et al. 2017; Shen et al., 2018b; Faghih-Naini and 

Shen 2018). We then discuss the relationship between BE1 and BE2. Concluding 

remarks are provided at the end.  

 

                                                 
3 Twenty-three years after Lorenz (1972), Prof. Lorenz addressed predictability 

issues by proposing new models in Lorenz (1996, 2005) that are nonlinear 

chaotic systems with many modes but not derived from physics-based PDEs. 
4 We agree with Prof. Arakawa that the predictability limit is not necessarily a 

fixed number” (Lewis, 2005).  

 



 

 

2  New Insights Revealed by High-dimensional LMs 

 
In this section, we: (1) discuss major features of the 3DLM (Lorenz, 1963), (2) 

provide a summary of recent studies using generalized high-dimensional LMs 

that were extended based on the 3DLM, and (3) apply our findings to improve 

our understandings of the Lorenz (1969) model.   

 
2.1. Overlooked Features within the 3DLM 

 

To facilitate discussions, we present Eqs. (A1-A3) from the original Lorenz 

model (1963) and discuss one popular, but inaccurate, analogy for chaos in 

Appendix A. We use this example to illustrate the important features of chaotic 

solutions that should include divergence and boundedness, which depend on the 

competitive or collective impact of three kinds of processes (e.g., nonlinear 

processes and linear heating and dissipative processes). The strength of heating is 

measured by the normalized Rayleigh parameter (r). Depending on whether the 

Rayleigh parameter is below or above a threshold of 24.74, two types solutions 

(i.e., steady state and chaotic solutions) are generally discussed.  However, based 

on the relative strength of the above processes, we show two sets of overlooked 

solutions within the 3DLM, as well as unique characteristics within high-

dimensional LMs, and apply them in order to refine the current view of weather 

being chaotic.  

The first set includes both steady-state and chaotic solutions. While chaotic 

solutions appear when the Rayleigh parameter exceeds the critical value (rc) of 

24.74, they may co-exist with steady-state solutions over a small range of r (i.e., 

24.06 < r < 24.74) (e.g., p. 333 of Ott 2002; p. 242 of Drazin 1992). As discussed 

later, such coexistence also occurs in high-dimensional LMs. In comparison, the 

second set of overlooked solutions appear when the Rayleigh parameter becomes 

larger (say, r > Rc; Rc = 313, Sparrow 1982; Shimizu 1979; Strogatz 2015). These 

solutions are isolated and closed. For a stable orbit, nearby orbits approach it, 

indicating its isolated nature. As a result, these outcomes are referred to as limit 

cycle solutions. One interesting characteristic for a limit cycle is that its orbit is 

solely determined by the system and independent of the ICs. Therefore, an initial 

error may play a role in triggering this type of solution. An important message for 

the appearance of limit cycle solutions at larger Rayleigh parameters is that 

chaotic solutions only occur over a finite range of Rayleigh parameters5.  In the 

past, the fundamental dynamics of the limit cycle have been illustrated using a 

grandfather clock: periodicity is maintained by both a driving force (e.g., the 

                                                 
5 Similar findings for the dependence of various solutions (i.e., chaotic and limit 

cycle solutions) on the strength of heating were also reported using a two-layer, 

quasi-geostrophic model that describes the finite-amplitude evolution of a single 

baroclinic wave by Pedlosky and Frenzen (1980). 



restoring force of the spring in the clock) and dissipation (e.g., friction in the air). 

Within the 3DLM, while the isolated nature requires dissipation, a “closed” nature 

with periodicity is achieved by nonlinearity alone or the competition of heating 

and nonlinearity within the non-dissipative model (e.g., Shen 2018). Below, 

associations of limit cycle solutions with nonlinear terms are briefly discussed so 

we can provide information regarding the source of recurrence within the 3DLM6.   

 

2.2 The Linear Uncoupled Geometric Model: the Role of a Saddle Point  

 

The linearized system of Eqs. (A1-A3) with respect to the trivial critical point, 

which only has linear forcing (e.g., heating and buoyancy) and dissipation terms, 

but no nonlinear term, produces either a bounded steady solution or an unbounded 

unstable solution.  While the geometric model of Guckenheimer and Williams 

(1979) consists of three linear uncoupled ODEs, a proof for dynamic equivalence 

between the geometric model and the 3DLM by Tucker (2002) revealed the 

existence of the Lorenz strange attractor. Tucker’s study suggests the important 

role of a saddle point at the original in producing a sensitive dependence of 

solutions on ICs.  However, as discussed in Shen et al. (2018b), an additional 

assumption of “return conditions” within the geometric model requires 

justification.   

 

2.3 The Non-dissipative 3DLM and the “Limiting” Equations: the Role of 

Nonlinearity 

 

By examining the nonlinear 3DLM, Shen (2018) recently illustrated the 

fundamental role of nonlinear terms in producing periodicity. We first analyzed 

the term for the nonlinear advection of temperature within the Rayleigh-Benard 

convection (RBC) equations in order to identify the nonlinear terms (i.e., XY and 

–XZ in Eqs. (A2) and (A3)) as a pair of downscaling and upscaling processes and, 

thus, defined them as a nonlinear feedback loop (NFL, Shen 2014). Assuming no 

dissipation, the 3DLM can be simplified so that it only contains nonlinear and 

heating processes. Within the nonlinear, nondissipative 3DLM (3D-NLM), we 

have shown that the NFL acts as a nonlinear restoring force to produce oscillatory 

solutions. We have also shown that the 3D-NLM with r = 0 is, indeed, the same 

as the “Limiting” Equations of Sparrow (1982, Eq. (2) on p. 133), a simplified 

model used to reveal oscillatory solutions under conditions of large Rayleigh 

parameters (i.e., limit cycle solutions, to be specific).  

 

2.4 Linearized Non-dissipative High-dimensional Lorenz Models: the Role of 

Extended NFLs  

 

                                                 
6 While a geometric model was proposed for illustrating the characteristics of 

the Lorenz strange attractor (Guckenheimer and Williams, 1979), the model 

does not include nonlinear terms for recurrence. 

 



Recently, the role of the extended NFL has been examined using non-dissipative 

high-dimensional LMs (e.g., Faghih-Naini and Shen 2018; Shen 2019et al., 

2018c). By linearizing the 3D-NLM and high-dimensional, non-dissipative LMs 

(Shen 2018, 2019; Shen and Faghih-Naini, 2017; Shen et al., 2018c), we showed 

that an extension of the NFL with two additional modes for temperature can 

introduce an additional frequency that is incommensurate with existing 

frequencies.  For example, Faghih-Naini and Shen (2018) found that as compared 

to the linearized 3D-NLM that produces a periodic solution with one frequency, 

the linearized 5D-NLM produces a quasi-periodic solution with two 

incommensurate frequencies (e.g., Figure C of Faghih-Naini and Shen (2018)). 

Using a special type of generalized NLM, Shen et al. (2018c2019) showed that 

the number of incommensurate frequencies is equal to (M-3)/2 + 1, where M 

represents the number of modes and is an odd number. Shen et al. (20198c) also 

found that a composite motion in higher-dimensional, non-dissipative LMs may 

look more complicated within the temporal space. Figure 3 indicates that the 

linearized 5D-NLM (7D-NLM) is mathematically identical to systems with two 

(three) springs and two (three) masses. 

Since a linearized system is mathematically simpler than its nonlinear 

version, it is effective for revealing energy transferring across spatial scales.  

However, a linearized system is only good for examining the evolution of a 

solution near the non-trivial critical point over a short period of time.  

Specifically, the linearized system cannot reproduce chaotic features (e.g., 

irregular oscillations between two butterfly’s wings) that require a nonlinear 

system. Below, using nonlinear dissipative versions, we illustrate the collective 

impact of the extended NFL, as well as additional dissipation and heating terms.  

 

2.5 Nonlinear, Dissipative High-dimensional Lorenz Models: Collective 

Impacts with Dissipations 

 

 

In the following, we illustrate that when dissipations are added back to the system, 

the impact is two-fold: (1) a damping of high-frequency modes and (2) negative 

nonlinear feedback.   The first feature is discussed using a linear stability analysis 

of the dissipative 3DLM, 5DLM, and 7DLM (e.g., Shen 2014, 2016). The 

analysis indicates that one, two, and three pairs, respectively, of complex 

eigenvalues appear near the non-trivial critical point, producing oscillatory 

components that may represent a growing oscillation, a decaying oscillation, or a 

simple oscillation. In general, due to stronger dissipations at higher wavenumber 

modes, the higher-frequency mode has a larger decay rate.  Since oscillatory 

components with larger decay rates dissipate quickly, we suggest that strong 

dissipations do indeed reduce the complexities of solutions associated with 

multiple incommensurate frequencies within high-dimensional LMs.  

Regarding the second feature, we have previously shown that the collective 

impacts of the NFL (and its extensions) and the dissipative terms have the ability 

to provide a negative feedback for stabilizing a system that requires a larger 

critical value for the Rayleigh parameter (rc) for the onset of chaos.  For example, 



the rc for the 5DLM, 7DLM, and 9DLM are 42.9, 116.9, and 679.8, respectively, 

as compared to a rc of 24.74 for the 3DLM (e.g., Figure 2; Table 1 of Shen 2016; 

Shen et al., 2018b). Similar to the 3DLM, chaotic solutions still appear over a 

finite range of Rayleigh parameters within the 5DLM, 7DLM, and 9DLM, as well 

as for higher-order LMs (e.g., Moon et al. 2017), requiring larger Rayleigh 

parameters for limit cycle solutions as compared to the 3DLM. Negative feedback 

can be found within the so-called Lorenz-Stenflo system that extends the 3DLM 

with one additional ODE containing one additional mode that takes rotation into 

consideration (e.g., Xavier and Rech 2010; Park et al. 2015, 2016). With the new 

9DLM and the generalized Lorenz model (Shen et al., 2018b,c), we can reveal 

the aggregated negative feedback based on the successive negative feedback from 

smaller-scale modes. 

 

2.6 The Generalized LM (GLM): Aggregated Negative FeedbackAggregated 

Negative Feedback in a Generalized Lorenz Model (GLM) 

 

Based on recent studies where we extended the NFL, we derived the generalized 

LM (GLM) in order to reveal the aggregated negative feedback that leads to a 

larger effective dissipation in higher dimensional LMs (Shen et al. 2018 b, c). The 

GLM produces consistent results that a larger r is required for the onset of chaos 

or a limit cycle solution within higher-dimensional LMs.   More importantly, the 

GLM with 9 modes (e.g., the 9DLM) was used to effectively reveal the co-

existence of two types of solutions. A linear stability analysis within the 9DLM 

suggests that the origin is still a saddle point but that non-trivial critical points are 

stable for any Rayleigh parameter with 𝜎 = 10 and b = 8/3. The appearance of 

stable, non-trivial critical points indicates a stronger aggregated negative 

nonlinear feedback within the 9DLM, as compared to the 5DLM and 7DLM, see 

details in Shen et al. (2018b). Unique features within the 9DLM allow two special 

sets of solutions: (1) the coexistence of chaotic and steady-state orbits with 

moderate Rayleigh parameters (679.8 < r < 1600) and (2) the coexistence of limit 

cycle/torus orbits and spiral sinks with large Rayleigh parameters (r >= 1600). 

The first type shares properties similar to that of the 3DLM, where co-existence 

only appears for 24.06 < r < 24.74. In comparison, co-existence appears over a 

wider range of Rayleigh parameters within the 9DLM. Additionally, the second 

type of co-existence has never been documented in studies using Lorenz models7. 

As a result of (1) the coexistence of chaotic and non-chaotic orbits8 and (2) the 

dependence of various types of solutions on the heating parameter, we suggest 

that, contrary to the traditional view that weather is chaotic, weather is, in fact, a 

superset that consists of both chaotic and non-chaotic processes. 

 

2.7 Positive Feedback in High-Dimensional Lorenz ModelsLMs 

 

                                                 
7 A preliminary simulation was presented in the 12th slide of Shen et al. (2018a). 
8 The coexistence of chaotic and quasi-periodic orbits has been recently 

documented in a modified Lorenz system by Saiki et al. (2017).  



In contrast to negative feedbacks, positive feedbacks can also be identified in 

high-dimensional LMs. While the two additional, high-wavenumber modes of the 

5DLM can provide negative nonlinear feedbacks for stabilizing solutions, as 

compared to the 3DLM, a third new mode within the 6DLM introduces an 

additional heating term that can destabilize solutions, as compared to the 5DLM. 

The 6DLM (Shen 2015b) requires a slightly smaller rc for the onset of chaos as 

compared to the 5DLM, while both have larger rcs than the 3DLM. The impact 

associated with the additional heating term is referred to as a positive feedback. 

Comparison of the 7DLM with a different 9DLM can reveal an additional positive 

feedback (Shen 2016, 2017).  

 

2.8 A “Rough” Analogy with a Tree 

 

Based on the above discussions, to illustrate the role of the NFL in a system, here, 

we use a tree as an analogy. The NFL in a system is viewed as the main trunk of 

a tree and its extensions as growth of the main trunk and branches. A bigger tree 

with a larger and stronger main trunk and branches may possess greater 

interconnections and is, thus, more stable (i.e., less vulnerable under windy 

conditions) as compared to a smaller tree. Additionally, asynchronous vibrations 

of the leaves may act as dissipations for stabilizing the branches and the tree (e.g., 

James et al. 2006).  Therefore, a larger-scale sophisticated modeling system with 

a “healthy” interconnection of the NFL and its extension could be more stable as 

compared to a smaller-scale simplified modeling system. However, depending on 

the balance of the main trunk, various branches, and leaves, a growing tree may 

not always increase its stability. One reasonable “hypothesis” may be drawn here: 

the probability of destroying a tree by a butterfly’s flap should be zero.  

 

2.9 An Analysis of the Lorenz 1969 Model: A Linearized Multi-scale Model 

 

 

The aforementioned analyses are applied in the following in order to determine 

whether the Lorenz (1969) model is a good tool for revealing BE1 and BE2. The 

Lorenz 1969 model contains many scales but it is linear. The linearized advection 

term within the 1969 model is responsible for energy spreading, while the basic 

state with a realistic spectrum serves as an energy source for various growth rates 

on different scales. However, unstable solutions within the linear system contain 

constant growth rates and, therefore, are fundamentally different from chaotic 

solutions. The corresponding solution grows at a constant exponential rate and is, 

therefore, not bounded. Growing perturbations are not allowed to provide 

feedback to the basic state whose changes should impact the availability of 

instability. An assumption of linearity has been addressed in a recent study by 

Durran and Gingrich (2014) who added a very simple nonlinear feedback term, 

leading to no significant change in their results (e.g., p. R128 of Palmer et al. 

2014). Therefore, the major features of perturbation transfer and growth at various 

scales within Lorenz (1969) cannot be interpreted as a BE1 that requires irregular 

oscillations associated with nonlinear processes. On the other hand, since the 



Lorenz (1969) linear model provides continual release of instability, the model 

can effectively reveal the role of a tiny perturbation in triggering the successive 

growth of systems at various scales (i.e., leading to “chain” reactions that should 

remain linear). Major features in Lorenz (1969) may be necessary conditions for 

BE2 but do not necessarily lead to the formation of an organized system (e.g., a 

tornado or a hurricane) that depends on, among other factors, such as the time 

required for growing an organized system (depending on the magnitude of the 

growth rate).  More importantly, the 1969 model can represent neither the impact 

of tiny perturbations at butterfly scales nor their physical processes (e.g., 

dissipative processes). Thus, as summarized in Table 1, BE2 cannot be revealed 

using the 1969 model. 

In Lorenz (1969), the growth rate was computed for estimating predictability. 

This approach or similar approaches have been applied in real world models for 

predictability studies. Since numerical errors may grow faster when a numerical 

solution has a larger growth rate, it is common to improve model predictability 

by suppressing “instability” within the model. However, if real world physical 

instability instead of “numerical” instability is reduced by numerical methods, the 

model can only simulate a weaker system as compared to the real observed 

system.  

 

3 Conclusions 
 

The Lorenz (1963) model (i.e., 3DLM) with the BE1 has had a large impact on 

nonlinear/chaotic dynamics and has been extensively studied in physics and 

applied mathematics (e.g., Smale 1998). The Lorenz (1969) model, with features 

of energy transfer and a scale dependence of growth rates, has a much deeper 

impact on approaches for estimating atmospheric predictability using (local) 

growth rates. Although these models were used to reveal the impact of tiny 

perturbations, they cannot properly represent tiny perturbations at real butterfly 

scales and their physical processes. Additionally, limited scale interactions within 

the nonlinear 3DLM and linearization of the Lorenz (1969) multiscale model 

disqualified these models for addressing the BE2.    

For the BE2, we may still ask how a tiny perturbation (e.g., a butterfly’s flap) 

can or cannot generate an organized system (e.g., a tornado). The BE1 revealed 

by the 3DLM, with a limited degree of scale interactions, indicate the 

complexities of solutions within the temporal space and cannot represent the BE2 

that requires multiple spatial scale interactions. Within high-dimensional LMs 

(e.g., the 5DLM) that increase the degree of scale interactions, small-scale 

processes can introduce a negative nonlinear feedback to suppress, but not 

enhance, chaotic responses. In comparison, positive feedback associated with a 

small scale process indicates the importance of the energy source for the small 

scale process (e.g., Shen 2016). In addition to the energy source and the transfer 

mechanism that may appear within the Lorenz 1969 model, an ideal model for 

addressing the BE2 should also include nonlinear intensification and dissipation, 

which collectively lead to time varying negative and positive feedbacks, and other 

factors, which include mechanisms for the organization (aggregation) of growing 



energy. In reality, the energy of butterfly flapping will cascade up and down 

spatial scales from nonlinear interactions (Pielke 2008, 2013). Downscale 

propagation will clearly dissipate into molecular motions and heat. Such a model 

result requires the inclusion of realistic dissipative processes. For upscale energy, 

less and less energy moves upscale. Thus, for real Earth systems no energy is 

capable of travelling a long distance (i.e., a large spatial scale) from a small 

perturbation (at a small temporal and spatial scale). Indeed, once any coherence 

in energy is lost, no mechanism is present that generates a coherent system (such 

as a tornado) at a distance.  Adding a radiative flux divergence term to the 

equations discussed in this paper would easily demonstrate this fact.  Based on 

the above analysis of Lorenz’s studies and subsequent studies, we conclude that 

no theoretical or observational evidence indicates the possibility that a butterfly’s 

flap is capable of creating a tornado (i.e., the probability for BE2 is, in reality, 

zero). Since numerical methods may introduce spurious chaos (Corless 1994) and 

since numerical models may produce false alarm events, any “numerical” 

evidence for BE2 is subject to serious verifications versus the nature of weather.  

The Lorenz 1963 and 1969 models have been used to reveal the nature of 

weather with a focus on “chaos”. The 3DLM model indeed produces various 

types of solutions, including steady-state solutions, chaotic solutions, and 

nonlinear oscillatory solutions (i.e., limit cycle solutions).  Linearly unstable 

solutions are produced by the Lorenz 1969 model. The 3DLM and high-

dimensional LMs additionally allow the co-existence of chaotic and non-chaotic 

solutions. Thus, we propose that the entirety of weather is a superset that consists 

of both chaotic and non-chaotic processes. Specific weather systems may appear 

on a chaotic or non-chaotic orbit for a finite period of time. Positive growth rates 

for a finite period of time may indicate the occurrence of either chaos or (local) 

instability. Non-periodicity may appear in the presence of chaos or a quasi-

periodicity that is associated with two or more incommensurate frequencies. 

Quasi-periodic flow also never repeats itself.  

The above refined view on the nature of weather suggests both potential and 

challenges. If we can identify non-chaotic solutions such as periodic or quasi-

periodic solutions or linearly unstable solutions in advance, we may obtain better 

predictability. Our future work will focus on improving our understanding of the 

roles of butterfly effects in real world, high-resolution global models and, thus, 

our understanding of the conditions under which nonlinear interactions may lead 

to non-chaotic solutions such as limit cycle solutions and/or chaotic solutions.  
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Appendix A: The Lorenz Model (1963) and a Popular Analogy 

for Chaos 
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We first introduce the classical 3DLM, as follows:  
𝑑𝑋

𝑑𝜏
= 𝜎𝑌 − 𝜎𝑋,                                          (𝐴1) 

𝑑𝑌

𝑑𝜏
= −𝑋𝑍 + 𝑟𝑋 − 𝑌,                              (𝐴2) 

𝑑𝑍

𝑑𝜏
= 𝑋𝑌 − 𝑏𝑍.                                         (𝐴3) 

Here, 𝜏, 𝜎, and 𝑟 represent dimensionless time, the Prandtl number, and the 

normalized Rayleigh number (or the heating parameter), respectively. Parameter 

𝑏 is a function of the ratio between the vertical scale of the convection cell and its 

horizontal scale.  (𝑋, 𝑌, 𝑍)  represent the amplitudes of the three Fourier modes 

(e.g., Table 1 of Shen 2014). Equations (A1)-(A3) include three types of physical 

processes, including buoyance/heating, dissipative, and nonlinear processes. The 

linear buoyance force and the heating force are represented by 𝜎𝑌 in Eq. (A1) and 

𝑟𝑋 in Eq. (A2), respectively. The three dissipative terms are – 𝜎𝑋, −𝑌, and – 𝑏Z 

and are ignored under the dissipationless condition. The two nonlinear terms, 

−𝑋𝑍 and 𝑋𝑌, are derived from nonlinear advection of the temperature term in the 

governing equation for the Rayleigh-Benard convection (RBC; e.g., Saltzmanm 

1962; Lorenz 1963; Eq. (2) of Shen 2014). With the exception of the heating 

parameter (r), the following parameters are kept constant: 𝜎 = 10 and 𝑏 = 8/3. 
Since climate and weather involve open systems, an assumption of constant 

parameters in numerical simulations using the 3DLM is not realistic and, thus, the 

applicability of numerical results to climate or weather should be interpreted with 

caution.   

The sensitive dependence on initial conditions (i.e., the BE1) has been 

illustrated using the following folklore (e.g., Gleick, 1987; Drazin, 1992):  

“For want of a nail, the shoe was lost. 

For want of a shoe, the horse was lost. 

For want of a horse, the rider was lost. 

For want of a rider, the battle was lost. 

For want of a battle, the kingdom was lost. 

And all for the want of a horseshoe nail.” 

However, in 2008, Prof. Lorenz stated that he did not feel that this verse described 

true chaos but that it better illustrated the simpler phenomenon of instability; and 

that the verse implicitly suggests that subsequent small events will not reverse the 

outcome (Lorenz, 2008). In other words, the verse only indicates divergence, not 

boundedness. Boundedness is important for the finite size of a butterfly pattern. 

Additionally, the verse does not consider any (future) possibility for a (small-

scale) process to bring a negative feedback, as illustrated using high-dimensional 

Lorenz models.  

  



 
 

  



 
Figure 1: An illustration of the bounded divergence of two nearby trajectories 

within the 3DLM with r = 28 and 𝜎 = 10. Panels (a) and (b) display solutions 

from the control and parallel runs, respectively, the latter of which adds a small 

perturbation (1e-10) into the initial value of Y. Panel (c) reveals the sensitive 

dependence of solutions on the initial conditions. Panel (d) displays bounded 

differences in solutions for the control and parallel runs.  

  



 
 

Figure 2: Phase space plots for (Y, Z) in various LMs. (a) Strange attractors with 

r = 28 within the 3DLM that display the well-known butterfly pattern. (b) A stable 

solution with r = 42 within the 5DLM. (c-d) Stable and chaotic solutions with r = 

112 and r = 120 within the 7DLM, respectively. Here, r is the normalized 

Rayleigh parameter. The figure indicates that high-dimensional LMs with the 

proper inclusion of new modes are more predictable than the 3DLM. Data are 

from Shen (2016). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Systems with one mass and one spring (a), two masses and two springs 

(b), and three masses and three springs (c). The three masses are identical (i.e., 

m1 = m2 = m3). The three spring constants, k1, k2, and k3, are Xc
2, 4Xc

2, and 9Xc
2, 

respectively. The governing equations for the above systems in panels (a)-(c) are 

identical to those for the locally linear 3D, 5D, and 7D non-dissipative Lorenz 

models (NLMs), respectively. The comparison illustrates how a nonlinear 

feedback loop and its extension, enabled by the proper selection of high 

wavenumber modes, can produce recurrent (i.e., periodic or quasi-periodic) 

solutions. 

 


