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Abstract 32 

 33 

Over 50 years since Lorenz’s 1963 study and a follow-up presentation in 1972, the statement 34 

``weather is chaotic’’ has been well accepted. Such a view turns our attention from regularity 35 

associated with Laplace’s view of determinism to irregularity associated with chaos. In contrast 36 

to single type chaotic solutions, recent studies using a generalized Lorenz model (GLM) have 37 

focused on the coexistence of chaotic and regular solutions that appear within the same model 38 

using the same modeling configurations but different initial conditions. The results, with 39 

attractor coexistence, suggest that the entirety of weather possesses a dual nature of chaos and 40 

order with distinct predictability. In this study, based on the GLM, we illustrate the following 41 

two mechanisms that may enable or modulate two kinds of attractor coexistence and, thus, 42 

contribute to distinct predictability: (1) the aggregated negative feedback of small-scale 43 

convective processes that can produce stable non-trivial equilibrium points and, thus, enable 44 

the appearance of stable steady-state solutions and their coexistence with chaotic or nonlinear 45 

oscillatory solutions, referred to as the 1st and 2nd kinds of attractor coexistence; and (2) the 46 

modulation of large-scale time varying forcing (heating) that can determine (or modulate) the 47 

alternative appearance of two kinds of attractor coexistence.  Based on our results, we then 48 

discuss new opportunities and challenges in predictability research with the aim of improving 49 

predictions at extended-range time scales, as well as sub-seasonal to seasonal time scales. 50 

  51 
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 52 

Capsule  53 

 54 

 55 

By revealing two kinds of attractor coexistence within Lorenz models, we suggest that the 56 

entirety of weather possesses a dual nature of chaos and order with distinct predictability.  57 

 58 

 59 

 60 

 61 

 62 

 63 

  64 
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1. Introduction 65 

 66 

Our current view of “weather is chaotic” is based on the pioneering modeling study of Prof. 67 

Lorenz (Lorenz 1963a) who presented the sensitive dependence of solutions on initial conditions 68 

(SDIC), also known as the butterfly effect (Lorenz 1993). The feature of SDIC suggests that an 69 

initial tiny perturbation will eventually lead to a different time evolution of the solution. The 70 

conventional view has had a profound impact in meteorology for decades, in particular in 71 

numerical weather and climate predictions. However, recent findings obtained by analyzing and 72 

comparing the original Lorenz models (Lorenz 1963a, 1969, 1972) and the generalized Lorenz 73 

model (GLM, Shen 2019 a, b; Shen et al. 2019) challenge the validity of the statement “weather 74 

is chaotic” in representing the true nature of weather. In this study, we provide new insights and 75 

opportunities using the GLM in order to formalize a revised view that focuses on the dual nature 76 

of chaos and order in weather, an “intuitive idea” that many meteorologists may unconsciously 77 

have, and to present approaches for improving our understanding of predictability and weather 78 

prediction at extended-range and sub-seasonal to seasonal time scales (e.g., Shen et al.  2010; Shen 79 

2019b).   80 

 81 

To achieve our goal, we first review three types of solutions within the Lorenz 1963 model and 82 

two kinds of attractor coexistence within the GLM, including coexisting chaotic and regular 83 

solutions. We then replace a time-independent parameter by a time-dependent model parameter in 84 

order to present the alternative and concurrent appearance of various types of solutions, showing 85 

the complexities in weather and climate. To facilitate discussions, two kinds of predictability are 86 

defined as follows: (1) intrinsic predictability that is only dependent on flow itself and (2) practical 87 
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predictability that is limited by imperfect initial conditions and/or (mathematical) formulas 88 

(Lorenz 1963b; Shen 2014). Table 1 lists the definitions of concepts related to predictability.  89 

 90 

2. Analysis and Discussions 91 

 92 

2.1 The Lorenz 1963 model and three types of solutions 93 

 94 

The model used in the Lorenz 1963 study was derived from the governing equations of 95 

Rayleigh-Benard convection with heating imposed on the bottom, and consists of three, first-order 96 

ordinary differential equations (ODEs) for the three state variables that represent amplitudes for 97 

the Fourier modes of stream function and temperature. The state variables, �, �, ���		�,  are 98 

referred to as primary scale modes to be distinguished from smaller-scale state variables that only 99 

appear within the GLM. To analyze a system of ODEs, state variables are often used as coordinates 100 

in order to construct the so-called phase space. The time evolution of a solution within the phase 101 

space is called an orbit or a trajectory. As a result of the three variables used as coordinates, the 102 

model is referred to as the three-dimensional Lorenz model (3DLM). In addition to the state 103 

variables, the 3DLM contains three, time-independent parameters that represent the strength of 104 

heating and dissipation, and the scale ratio of the convective cell. The strength of heating is 105 

determined by the normalized Rayleigh parameter (also called a heating parameter, denoted as �) 106 

that represents temperature difference between the top and bottom. Without a loss of generality, 107 

below, we discuss features of the 3DLM and GLM by only varying the heating parameter and 108 

keeping the remaining two parameters constant. The dependence of solutions on the other 109 

parameters can be found in Sparrow (1982). 110 
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 111 

As discussed in Section 3.1 of Shen 2019b, each of the three types of solutions, including 112 

steady-state, chaotic, and nonlinear oscillatory solutions, may exclusively appear at small, 113 

medium, and large heating parameters, respectively (e.g., Sparrow 1982). The three types of 114 

solutions are also referred to as point, chaotic, and periodic attractors, respectively, and the latter 115 

is also known as a limit cycle solution (Shimizu 1979)1 . Intrinsic predictability for chaotic 116 

solutions is limited but unlimited for non-chaotic orbits. Within chaotic solutions, the degree of 117 

finite predictability varies, displaying a dependence on initial conditions (Slingo and Palmer, 2011; 118 

Nese, 1989; Zeng et al. 1993).  119 

 120 

Missing Features in the Conventional View of “Weather is Chaotic” 121 

 122 

By only applying chaotic solutions in order to define the nature of weather, an implicit 123 

assumption is that heating parameters must always stay within the specific interval of positive 124 

values.  A consequence is that an initial tiny perturbation will always lead to a significant change 125 

in the time evolution of solutions (i.e., SDIC). However, neither the assumption nor the 126 

consequence has been verified against observations.  Below, we first illustrate the impact of time 127 

varying heating parameters on the appearance of chaotic solutions and then discuss the 128 

insensitivity of non-chaotic solutions to initial conditions.  129 

 130 

Modulation of Solutions by a Time Varying Heating Function 131 

                                                
1 Studies by Pedlosky (1972) and Smith and Reilly (1977) found that a limit cycle solution can be applied in order 

to understand amplitude vacillation, whose amplitude grows and periodically decays in a regular cycle (Lorenz 

1963c; Ghil et al. 2010). Oscillatory solutions can be found in simplified or high-order, Lorenz-type models (e.g., 

Park et al. 2016; Moon et al. 2017, 2019, 2020; Faghih-Naini and Shen 2018; Shen 2018, 2019a, 2020).   
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 132 

Table 2 lists a periodic heating function with a time period of 2�� and two coefficients2  (e.g., 133 

Franz and Zhang 1995), and the initial conditions for experiments using the 3DLM and GLM. The 134 

integration interval of dimensionless time, �, is between 0 and 5�� (i.e., � ∈ [0, 5��]). For the 135 

selected periodic heating function,  � ∈ [10, 350],	 we compare a control run to two parallel-runs 136 

that add initial tiny perturbations of  � = 109: and � = −109:, respectively. As shown in Figures 137 

1a-1b, the alternative appearance of three types of solutions is modulated by periodic heating. A 138 

zoomed-in view in Figures 1c-1e shows: (1) A SDIC as indicated by the divergences of initial 139 

nearby trajectories for a heating parameter larger than 24.74 (e.g.,  � ∈ [28, 30]). (2) Chaotic 140 

solutions for � ∈ [30.5, 32.5]. (3) Regular oscillatory solutions at large heating parameters for � ∈141 

[40,42]. These possess oscillatory features of limit cycle solutions that are defined using a 142 

constant heating parameter. As defined in Table 1, oscillatory features associated with a time 143 

varying parameter may be referred to as recurrence. (4) Figure 1a additionally displays a transition 144 

from a stable steady-state solution, to an unstable steady-state solution, and then to a chaotic 145 

solution for � ∈ [23, 30]  (or � ∈ [55,62] ). Such a transition indicates an effective, but not 146 

necessarily realistic, growth of disturbance as a result of the nonexistence of stable equilibrium 147 

points for � > 24.74 (Lorenz 1963a). After being chaotic, associated with time varying heating, 148 

all three trajectories become regularly oscillatory again as shown in Figure 1f for � ∈ [72, 74].	 (5)  149 

The appearance of a chaotic epoch with SDIC is modulated by periodic heating (i.e., the forcing) 150 

                                                
2 As defined in Table 1, the system becomes non-autonomous (e.g., Lucarini 2019) since a time varying parameter is 

considered. However, mathematically, such a system can be converted into an autonomous system as follows: we 

introduce a new state variable �	in order to replace 
B
C , yielding  �(�) = �E + �G sin(�) and 

KL
KB =

G
C.	Then, the new 

system that consists of the 3DLM and an additional ODE for the new state variable � is autonomous. In this study, a 

change in (�M, �G , �) does not change our conclusion.  
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and SDIC may not be well-defined within the epoch of nonlinear oscillatory solutions, during 151 

which the differences of two initial nearby trajectories regularly vary. 152 

 153 

As documented in existing studies, initial small errors do not have a long-term impact on non-154 

chaotic solutions, such as steady-state and oscillatory solutions (except for phases), consistent with 155 

our daily experiences. However, the exclusive appearance of single attractors suggests that initial 156 

tiny errors either have no impact or a large impact.  Below, to provide a more realistic description 157 

of weather, we present a model that possesses the coexistence of chaotic and non-chaotic solutions.  158 

 159 

2.2 The Generalized Lorenz Model and Two Kinds of Attractor Coexistence  160 

 161 

Attractor coexistence within conservative Hamiltonian systems has been documented for 162 

several decades (Hilborn 2000).  Within dissipative systems, the coexistence of chaotic and non-163 

chaotic solutions has also been discussed in some fields for more than two decades (e.g., Sprott et 164 

al. 2005). However, in meteorology3, related research activities using high-order, Lorenz-type 165 

systems still remain active. Below, we apply the GLM in order to discuss how coexisting attractors 166 

may better reveal the nature of weather4.   167 

 168 

                                                
3 The 3DLM also possesses attractor coexistence (Yorke and Yorke 1979).   However, such a feature has been 

overlooked, partly because it appears as a very limited set of solutions within a very small interval of the heating 
parameter. By comparison, Lucarini and Bodai applied a multistable system with coexisting attractors in order to 

reveal the bistability of the climate system (e.g., Garashchuk et al. 2019; Lucarini and Bodai 2019). 
4Coexisting solutions at two time scales are not necessarily the same as coexisting chaotic and non-chaotic 

attractors. For example, coexisting slow and fast manifolds in Lorenz (1986) are non-chaotic. Coexisting slow and 

fast variables within coupled systems (e.g., Pena and Kalnay 2004; Mitchell and Gottwald 2012) are chaotic.  

Lorenz (1990) applied his 1984 model (Lorenz, 1984) for illustrating the coexistence of two oscillatory solutions.   
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The GLM that allows any odd number of Fourier modes was derived based on the physical 169 

improvement of nonlinear temperature advection that is associated with mathematical extension 170 

of the nonlinear feedback loop within the 3DLM. A brief description of the GLM is provided in 171 

the Supplemental Material. As shown in Figure 1 of Shen 2019a, a comparison of the GLM using 172 

3, 5, 7, and 9 modes revealed a continuously improved representation of temperature associated 173 

with additional smaller-scale modes.  174 

 175 

Mathematically, our selection of new Fourier modes extends the nonlinear feedback loop and 176 

introduces new nonlinear coupling terms and new ODEs. As a result of nonlinear coupling terms 177 

that couple existing and new ODEs, a hierarchical scale dependence can be found within a high-178 

dimensional LM (Shen 2016). Additionally, negative feedback by small-scale processes can be 179 

aggregated in order to provide a stronger effective dissipation for stabilizing solutions in higher 180 

dimensional Lorenz models. Thus, the GLM with a larger number of modes requires a larger 181 

heating parameter for the onset of chaos (Shen 2019a; Shen et al. 2019), yielding better 182 

predictability5. Other than the above, the aggregated negative feedback enables the appearance of 183 

stable equilibrium points within the GLM with 9 or more modes, leading to two kinds of attractor 184 

coexistence. 185 

 186 

For example, as discussed in Shen (2019a), the first kind of attractor coexistence that consists 187 

of steady-state and chaotic solutions appears at a “moderate” heating parameter (e.g., r = 680).  At 188 

                                                
5 This is a unique feature of the GLM. In general, within a nonlinear PDE system, simply adding more Fourier 

modes does not necessarily produce a higher-dimensional system of ODEs that improves predictability as compared 

to a lower-dimensional system. As discussed on pages 8-11 of the Supplemental Materials for Shen (2016), our 

GLM can use fewer Fourier modes in order to produce a model with better predictability, as compared to other 

Lorenz-type models.  
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a large heating parameter (e.g., r = 1600), Shen (2019a) illustrated the second kind of attractor 189 

coexistence that contains steady-state and limit cycle solutions. As shown in Figure 2, ensemble 190 

runs with 128 members reveal how chaotic and non-chaotic solutions with distinct intrinsic 191 

predictability appear within different portions of the X-Y phase space (see details in Shen et al. 192 

2019). Within chaotic solutions, the degree of finite predictability varies, as suggested in Figure 1 193 

of Slingo and Palmer (2011). Other than the above, the coexistence of two periodic solutions with 194 

different periods has also been documented (e.g., Figure 8 of Shen 2019a).  195 

 196 

A Revised View with the Alternative and Concurrent Appearance of Various Types of Solutions   197 

 198 

To better reveal the complexities of weather and climate, we discuss the alternative and 199 

concurrent appearance of various types of solutions associated with the time varying heating 200 

function in Table 2, yielding 	r ∈ [680, 1720].  The first two panels of Figures 3 display three 201 

trajectories and the heating function for � ∈ [0, 5��]. Figures 3c-3e sequentially reveal three 202 

chaotic orbits, the first kind of attractor coexistence, and the second kind of attractor coexistence, 203 

respectively. The results are consistent with those in Shen (2019a) that kept the heating parameter 204 

as a constant during numerical integration. Figure 3f displays the “coherent” variation of the nearly 205 

steady-state solution and the heating function for � ∈ [30,78]. 206 

 207 

Additional new insights from Figure 3 include: (1) The first appearance of attractor coexistence 208 

with two different attractors, originally from nearby trajectories, indicates the so-called final state 209 

sensitivity (Grebogi et al 1983) (i.e., whether or not the “final state” is a chaotic or steady state 210 

solution depends on initial conditions). (2) Although the two trajectories become chaotic with 211 
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SDIC after � > 21.25,	 they become oscillatory solutions with very comparable amplitudes and 212 

frequencies after a long time integration, � ∈ [40,42].  As a result, SDIC is not well defined during 213 

the epoch of the 2nd kind of attractor coexistence since, in particular, ICs for weather can be 214 

continuously obtained. (3) Figure 3f indicates that once a “steady state” solution appears (when it 215 

reaches an equilibrium state with zero local time changes for all state variables), it remains 216 

“steady” and varies with the time-dependent heating function6. Such a feature cannot be found 217 

within the 3DLM because its non-trivial equilibrium points are not stable for r > 24.74.  As a result, 218 

the appearance of stable equilibrium within the GLM effectively inhibits chaotic growth for some 219 

initial tiny perturbation, indicating the role of aggregated negative feedback. (4) Three major time 220 

scales for oscillatory or chaotic components can be identified: a large temporal scale (i.e., at the 221 

time scale of the heating function) in the slowly varying, stable steady-state solutions (e.g., Figure 222 

3f), as well as the “envelope” of entire solutions (e.g., Figure 3a), medium temporal scales for 223 

nonlinear oscillatory solutions (e.g., Figure 3e), and small temporal scales within transient 224 

oscillatory components of steady-state solutions and chaotic solutions.  (5) The alternative and 225 

concurrent appearance of various types of solutions indicate the complexities of weather and 226 

climate that possess both chaotic and regular processes.  227 

  228 

                                                
6 Within both the 3DLM and GLM, as well as in other autonomous dissipative systems, the existence of a non-

trivial equilibrium point suggests that corresponding steady-state solutions remain at a non-zero constant (i.e., they 

will not completely dissipate). However, on the other hand, since the stable steady-state solution of the 9DLM 

remains nearly “stationary” when heating parameters smoothly increase, such a stable solution may effectively 

dissipate as a result of the inclusion of other dissipative processes.  
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3. Conclusions and Outlook 229 

 230 

In this study, in contrast to the conventional view of “weather is chaotic”, we suggest a refined 231 

view that the entirety of weather possesses both chaos and order.  Such a revised view is 232 

fundamentally different from the Laplacian view of deterministic predictability and the Lorenz 233 

view of deterministic chaos. The refined view that turns our attention to coexisting multiple 234 

attractors from single attractors suggests both potential and challenges for improving our 235 

understanding of predictability and prediction for weather, as well as climate, as summarized 236 

below.   237 

 238 

Within the GLM, two major physical processes that determine the alternative and/or concurrent 239 

appearance of various types of solutions and their distinct predictability are:  240 

(1) the aggregated negative feedback of small-scale processes, indicating the potential role of 241 

improved accuracy (via an increase of vertical resolution or improved physical processes) 242 

in stabilizing the system;  243 

(2) modulation through a slowly varying heating function that may represent either temporal 244 

or spatial variations of “forcing” (e.g., radiation), yielding different predictability over 245 

different time periods or regions. 246 

From a modeling perspective, this slowly varying forcing may be analogous to internal forcings 247 

such as large-scale waves that provide the determinism of tropical cyclone activities or external 248 

forcings such as slow processes that come from ocean or land model components.  249 

 250 
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In addition to determinism by large-scale forcing, predictability amongst various types of 251 

solutions displays a dependence on: (1) initial conditions (e.g., via SDIC or the final state 252 

sensitivity), (2) model parameters (e.g., leading to chaotic and/or non-chaotic solutions), and (3) 253 

number of modes (e.g., yielding single attractors or multiple coexisting attractors). Chaotic 254 

processes display a sensitivity to initial conditions and possess finite intrinsic predictability. 255 

However, finite (practical) predictability within a real-world model may appear as a result of 256 

different mechanisms, including linear instability and/or computational chaos (Lorenz 1989; also 257 

see Table 1). For non-chaotic, steady-state or nonlinear oscillatory solutions, their intrinsic 258 

predictability is deterministic (e.g., up to the lifetime of a dissipative solution or the time interval 259 

of the epoch for oscillatory solutions) and, thus, their practical predictability may be continuously 260 

increased by improving the accuracy of the model and the initial conditions.  261 

 262 

A limit of (practical) predictability of two weeks that has been proposed for decades was 263 

recently suggested for weather systems in the mid-latitudes (Zhang et al. 2019). By comparison, 264 

our results suggest that better predictability for regular systems may locally appear in space and 265 

time (e.g., at extended-time or sub-seasonal to seasonal time scales) (e.g., Shen 2019b; Judt 2020), 266 

as illustrated below: 267 

• A 10-year, multiscale analysis of hurricanes and African easterly waves (AEWs; Wu and 268 

Shen 2016) indicated a near-constant annual number of AEWs, with the number shifting 269 

between 26 and 30 for 9 of the 10 study years during the July – September period. Such a 270 

feature seems to suggest ‘‘stable’’ large-scale forcing that may appear as a result of radiation 271 

over the African continent that contributes to a strong baroclinic zone along the boundary 272 

in the Sahel of central and eastern Africa. 273 
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• Based on the dynamics of limit cycle solutions, Shen (2019b) hypothesized that a balance 274 

between strong heating and nonlinearity7 may lead to the “recurrence” of multiple AEWs.  275 

• Although it may be challenging to predict the onset of an epoch for nonlinear oscillatory 276 

solutions, as shown in Figure 3, better predictability is expected within such an epoch.  The 277 

lead author and his co-authors (e.g., Shen et al. 2010; Shen 2019b) presented realistic 30-278 

day simulations for the recurrence of multiple AEWs and the formation, movement, and 279 

intensification of hurricane Helene (2006) between Day 22 and 30. Such results were 280 

verified in a modeling sensitivity study with changes in dynamics and physical initial 281 

conditions.  282 

 283 

To understand, verify, and improve the model’s performance in predictions, additional 284 

suggestions and/or important concepts are provided below: 285 

• Since SDIC does not always appear, initial tiny perturbations do not always contaminate 286 

numerical simulations. 287 

• The presence of oscillatory (or saturated) root mean square average forecast errors for 288 

ensemble runs can help check whether oscillatory (or chaotic) solutions dominate over the 289 

target regions or periods (Liu et al. 2009). A focus on oscillatory types of solutions using 290 

models and observations may be effective for understanding intrinsic predictability at 291 

                                                
7 Pedlosky and Frenzen (1980) discussed chaotic and non-chaotic solutions using a quasi-geostrophic model that is 

mathematically identical to the 3DLM and suggested that the features of the 3DLM are directly applicable to the 

model of a weakly nonlinear baroclinic wave (also see Pedlosky 2019). Limit cycle solutions have been applied for 

studying the dynamics of Quasi-biennial Oscillation (e.g., Renaud et al. 2019) and vortex shedding (e.g., Noack and 
Eckelmann 1994; Ramesh et al. 2015).  In comparison, by revealing multiple, stable, steady-state solutions in a low-

order (six-dimensional) model based on a quasi-geostrophic system, Charney and DeVore (1979) suggested that 

atmospheric blocking, with resultant longer predictability, may appear in the form of a stable steady-state solution, 

due to a balance of nonlinearity, thermal forcing, Ekman damping, and topography (e.g., Crommelin et al.,  2004; 

Chen and Xiong, 2016). Such a feature indicates the importance of (mechanic) topographic forcing. This study focuses 

on the collective impact of nonlinearity and time varying heating, as well as dissipation on oscillatory features.    
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extended-range time scales and sub-seasonal to seasonal scales.  However, depending on 292 

the periods of oscillatory systems, oscillatory features may not be detectable in short-term 293 

(~5-7 day) predictions or may appear in the form of computational chaos. An improved 294 

error growth model that can reveal saturated or oscillatory errors is required.   295 

• As a result of final state sensitivity, it is important, but challenging, to detect the boundary 296 

between the basins of attraction for different attractors, in particular for a given initial 297 

condition that is close to a fractal boundary of a so-called riddled basin (e.g., Alexander et 298 

al. 1992; Cazelles 2001; also see Table 1). A systematic analysis of “outliers” amongst 299 

different ensemble runs may provide insights on the existence of multiple stability.  300 

• Additionally, by taking intransitivity into consideration (Lorenz, 1990; Pielke and Zeng 301 

1994; also see Table 1), a different level of challenge in long-term prediction appears when 302 

transitivity occurs.  303 

• In contrast to regular forcing, large-scale irregular forcing (e.g., El Niño that was shown to 304 

be “chaotic” by Guckenheimer et al. 2017) could also modulate small-scale processes, 305 

increasing uncertainties in predictions. By comparison, small-scale processes may introduce 306 

additional heating in order to destabilize the system (e.g., Shen 2015, 2017). As such, 307 

identifying forcing terms and understanding their trends (e.g., growing or decaying) are 308 

important for better understanding their collective impact with nonlinearity on model 309 

simulations.    310 

• To verify the refined view (that contains attractor coexistence, SDIC, final state sensitivity, 311 

and intransitivity) using numerical weather prediction models or observations, new analysis 312 

methods (e.g., for classifying basins of attraction, Sprott and Xiong 2015; and for revealing 313 

and detecting recurrence, Reyes and Shen 2019) are required.   314 
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• To overcome barriers that are holding back further advancement in predictability research,  315 

it is important to assess the ability of model ensemble predictions in bracketing and 316 

differentiating types of uncertainties in the context of intrinsic predictability that is only 317 

dependent on the flow itself, and practical predictability that is limited by imperfect initial 318 

conditions and/or (mathematical) formulas. 319 

 320 
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Table 1: Definitions of concepts related to predictability in this study. 478 

 479 

name definitions references 

1st kind of attractor 

coexistence 

coexistence of chaotic and steady-state solutions Yorke and 

Yorke (1979); 

Shen (2019a) 

2nd kind of attractor 

coexistence 

coexistence of nonlinear oscillatory and steady-state 

solutions 

Shen (2019a) 

attractor The smallest attracting point set that, itself, cannot be 

decomposed into two or more subsets with distinct 

basins of attraction. 

Sprott et al. 

2013 

autonomous A system of ODEs is autonomous if time does not 

appear explicitly within the equations. 

Jordan and 

Smith 2007 

basin of attraction As time advances, orbits initialized within a basin 

tend asymptotically to the attractor lying within the 

basin. 

Thompson 

and Stewart 

2002 

chaos Orbits exhibit sensitive dependence on ICs. Lorenz 1993 

computational chaos Appearing “when the exact solution varies 

periodically 

with time, there is sometimes a range of time 

increment where the computed solution is chaotic.” 

Lorenz 2006 

final state sensitivity Nearby orbits settle to one of multiple attractors for a 

finite but arbitrarily long time. 

Grebogi et al. 

1983 

intransitivity A specific type of solution lasts forever.  Lorenz 1990 

intrinsic 

predictability 

Predictability that is only dependent on the flow 

itself. 

Lorenz 1963b 

Shen 2014 

limit cycle nonlinear oscillatory solution; an isolated closed orbit Jordan and 

Smith 2007 

non-autonomous Variable time (�) appears on the right-hand side of 

the equations.  

Jordan and 

Smith 2007 

phase space Within a system of the first-order ODEs, a phase 

space or state space can be constructed using time-

dependent variables as coordinates.  

Hilborn 2000 

practical 

predictability 

Predictability that is limited by imperfect initial 

conditions and/or (mathematical) formulas. 

Lorenz 1963b 

Shen 2014 

recurrence Defined when a trajectory returns back to the 

neighborhood of a previously visited state.  

Recurrence may be viewed as a generalization of 

“periodicity” that braces quasi-periodicity with 

multiple frequencies and chaos. 

Thompson 

and Stewart 

2002 

riddled basins Basins with fractal boundaries in which every point 

in one basin of attraction is arbitrarily close to a point 

in the other basin. 

Alexander et 

al. 1992 

sensitive dependence The property characterizing an orbit if most other 

orbits that pass close to it at some point do not 

remain close to it as time advances. 

Lorenz 1993 
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 480 

Table 2: Model settings for numerical experiments within the 3DLM and GLM.  The time 481 

varying heating function is written, as follows:	�(�) = �E + �G sin OBCP. 482 

Here,  � represents non-dimensional time and T is the time period of the heating function.  483 

�E 	���	�G are selected in order to determine the specific range of values for the heating 484 

parameter. 485 

 486 

 487 

 488 

 489 

 490 

 491 

  492 

 3DLM GLM with 9 Modes 

Coefficients and 

period for the heating 

function 

(�E , �G, T) = (180, 170, 5) (�E , �G, T) = (1200, 520,5) 

Initial conditions • (�, �, �) = (0, 1 + �, 0) 
• � = 0, 109:, or −109: 

• (�, �, �) = (0, 1 + �, 0) 
• the rest of state variables = 0 

• � = 0, 109:, or −109: 



Figure 1: The alternative appearance of three types of solutions modulated by the periodic heating function,
r = r0 + r1sin(τ/T ) within the 3DLM. The green line represents the solution of the control run, while blue and
red lines display solutions obtained from parallel runs that include an initial tiny perturbation, ǫ = 10−8 and
ǫ = −10−8, respectively. An orange line shows the heating function. From top to bottom, the first two panels
display the three orbits and the heating parameters for τ ∈ [0, 5πT ]. In the first panel, a pair of dashed vertical
lines indicates the time interval used in the 3rd-6th panels. The third panel for τ ∈ [28, 30] reveals a transition
to diverged trajectories, displaying sensitive dependence on initial conditions. After a transition from stable to
unstable steady-state solutions, chaotic solutions appear, as shown in the fourth panel for τ ∈ [30.5, 32.5]. The
fifth panel for τ ∈ [40, 42] displays nonlinear oscillatory solutions that are comparable to limit cycle solutions
typically defined at large, time-independent heating parameters. After being chaotic and steady associated with
time varying heating, all three trajectories become regularly oscillatory again (e.g., for τ ∈ [72, 74] in the sixth
panel).



Figure 2: The first kind of attractor coexistence within the generalized Lorenz model. The panel displays 128
orbits in different colors starting with different initial conditions(ICs) for τ ∈ [0.625, 5] with r = 680. Chaotic
orbits recurrently return close to the saddle point at the origin. Non-chaotic orbits eventually approach one of
two stable critical points, as shown with large blue dots. Chaotic and non-chaotic orbits occupy different regions
of attraction within the phase space.



Figure 3: The alternative and concurrent appearance of various types of solutions modulated by the periodic
heating function, r = r0 + r1sin(τ/T ), within the GLM. The color scheme and layout are the same as for Figure
1. From top to bottom, the first two panels display the three orbits of the control and parallel runs and the
heating function. For parallel runs, the initial tiny perturbations are ǫ = 10−8 and ǫ = −10−8, respectively.
The third panel for τ ∈ [20, 22] reveals chaotic solutions. The first kind of attractor coexistence, consisting
of chaotic solutions and a steady-state solution, is shown in the fourth panel for τ ∈ [28, 30]. The fifth panel
for τ ∈ [40, 42] displays the second kind of attractor coexistence, including nonlinear oscillatory solutions and
steady-state solutions. Interestingly, two orbits that appear chaotic at earlier times become regularly oscillatory
with comparable amplitudes and phases. The sixth panel displays a nearly steady-state solution (−Y/2) and the
heating function r(τ)/20 for τ ∈ [30, 78], showing a unique feature of the GLM as compared to the 3DLM.


