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Abstract.  
 
The pioneering study of Lorenz in 1963 and a follow-up presentation in 1972 changed our 
view on the predictability of weather by revealing the so-called butterfly effect, also known 
as chaos. Over 50 years since Lorenz’s 1963 study, the statement of ``weather is chaotic’’ 
has been well accepted. Such a view turns our attention from regularity associated with 

Laplace’s view of determinism to irregularity associated with chaos. Here, a refined 
statement is suggested based on recent advances in high-dimensional Lorenz models and 
real-world global models. In this study, we provide a report to: (1) Illustrate two kinds of 
attractor coexistence within Lorenz models (i.e., with the same model parameters but with 
different initial conditions). Each kind contains two of three attractors including point, 
chaotic, and periodic attractors corresponding to steady-state, chaotic, and limit cycle 
solutions, respectively. (2)  Suggest that the entirety of weather possesses the dual nature 
of chaos and order associated with chaotic and non-chaotic processes, respectively. 

Specific weather systems may appear chaotic or non-chaotic within their finite lifetime. 
While chaotic systems contain a finite predictability, non-chaotic systems (e.g., dissipative 
processes) could have better predictability (e.g., up to their lifetime). The refined view on 
the dual nature of weather is neither too optimistic nor pessimistic as compared to the 
Laplacian view of deterministic unlimited predictability and the Lorenz view of 
deterministic chaos with finite predictability. 
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1  Introduction 
 

Is weather chaotic? A view that weather is chaotic was proposed and is recognized 

based on the pioneering work of Lorenz (1963a) who first introduced the concept 

of deterministic chaos.  Defined as aperiodic solutions that display sensitive 

dependence on initial conditions (ICs), chaos is also known as the butterfly effect. 

In a follow-up conference presentation in 1972 (Lorenz 1972), the concept of 

sensitivity to ICs was further discussed by addressing whether a butterfly’s flap 

may lead to a chain of responses that remotely generates a tornado. Since then, 

the butterfly effect has come to be known as a metaphor for indicating the huge 

impact of a tiny perturbation on the formation of a tornado. The original Lorenz 
1963 study and the 1972 presentation, as well as his 1969 study (Lorenz 1969a), 

laid the foundation for chaos theory that is viewed as the third scientific 

achievement in the 20th century, after relativity and quantum mechanics, 

inspiring numerous studies in multiple fields, including earth science, 

mathematics, philosophy, physics, etc. (Gleick 1987). 

 

While periodic solutions were a main focus until the Lorenz (1963) study, non-

periodic solutions have increasingly received attention over the past fifty years.  

Lorenz’s discovery has led to the statement of “weather is chaotic” and to a 

paradigm shift in the view of finite predictability from the Laplacian view of 

unlimited deterministic predictability. The idea of finite predictability for chaotic 
weather has prompted a search for the upper limit of predictability that was 

determined as two weeks based on the analyses of unstable solutions from 

simplified models and data (e.g., Lorenz 1969a). With the above being said, our 

current view on the chaotic nature of weather and a predictability limit of two 

weeks are based on the understanding of chaotic (as well as unstable) solutions 

obtained from elegant but simple models. To facilitate discussions, we define two 

kinds of predictability, including (1) intrinsic predictability that is dependent only 

on flow itself and (2) practical predictability that is limited by the imperfect initial 

conditions and/or (mathematical) formulas (Lorenz 1963b; Shen 2014). 

 

Chaotic solutions are just one type of solution that occurs over finite intervals of 

time-independent parameters within the Lorenz model. To reveal the true nature 
of weather, we should take into consideration other types of solutions within 

original Lorenz models and newly developed generalized Lorenz models 

(Guckenheimer and Williams 1979; Sparrow 1982; Pielke and Zeng 1994; Smale 

1998; Tucker 2002; Musielak et al. 2005; Roy and Musielak 2007; Yang and 

Chen 2008; Sprott et al. 2013; Moon et al. 2017, 2019; Felicio and Rech 2018; 

Macek 2018; Faghih-Naini and Shen 2018; Reyes and Shen 2019; Shen 2014-

2018, 2019a). For example, in addition to chaotic solutions, two types of non-

chaotic solutions indeed appear over different intervals of parameters within the 

Lorenz model (Sparrow 1982). Furthermore, recent studies using a generalized 

high-dimensional Lorenz model (e.g., Shen 2019a; Shen et al. 2019; Reyes and 

Shen 2019) showed that chaotic and non-chaotic solutions may coexist within the 
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same model parameters but for different ICs (e.g., Sprott et al. 2005; Sprott and 

Xiong 2015). Thus, it is important to understand whether or not and how other 

types of solutions and their coexistence may help illustrate a more comprehensive 

view on the nature of weather, and improve our understanding of predictability 
associated with different types of solutions. Specifically, we may ask whether the 

statement of ``weather is chaotic’’ that exclusively considers chaotic solutions is 

scientifically precise.  

 

To address the above, here, we first provide a review of major solutions using the 

Lorenz model (LM), including three types of solutions or three attractors in 

Section 2. In this study, a specific type of solution is referred to as an ``attractor’’, 

defined as the smallest attracting point set that cannot be decomposed into two or 

more subsets with distinct regions of attraction (e.g., Sprott et al. 2013). We then 

summarize our recent findings for two kinds of attractor coexistence (i.e., with 

the same model parameters but with different initial conditions) using a newly 

developed, generalized, high-dimensional LM (GLM) (e.g., Shen 2019a) in 
Section 3. Section 4 is presented in order to support the findings for two kinds of 

attractor coexistence using the original LM with different parameters. Based on 

an analysis of the LM and the GLM, we suggest a refined view on the dual nature 

of weather in Section 5. Additional support for this view is also presented by the 

review of prior studies. Concluding remarks are provided in Section 6.  

 

2. The Lorenz 1963 Model 

 

In his 1963 study, Prof. Lorenz presented an elegant system of three ordinary 

differential equations (ODEs) derived from the governing equations for the 

Rayleigh-Benard convection (e.g., Saltzman 1962; Lorenz 1963a). The system 
describes the time evolution of three variables, X, Y, and Z, as follows: 

��

��
= �� − ��,																																										(1) 

��

��
= −�� + �� − �,																														(2) 

��

��
= �� − ��.																																									(3) 

Here,	τ	is the dimensionless time. Three time-independent parameters include the 

Prandtl number (σ), the normalized Rayleigh number (r),	also called the heating 

parameter, and a function of the ratio between the vertical and horizontal scales 

of the convection (b).  (X, Y, Z)		represent the amplitudes of the three Fourier 

modes for dynamic and thermodynamic variables. The system contains three 

types of physical processes, including buoyancy/heating terms (represented by σY 

and rX), dissipative terms (represented by – σX, −Y, and – bZ), and nonlinear 

processes (indicated by −XZ and XY). With the exception of the heating parameter 

(r), the following parameters are kept constant: σ = 10 and b = 8/3. Control and 

parallel runs are performed in order to reveal the difference (or divergence) of 

two solutions. The only difference between control and parallel runs is that a 
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parallel run includes tiny perturbations (∈= 10@AB) or finite perturbations (∈	=

−0.9)	in initial conditions.  

 

Using the state variables X, Y, and Z as coordinates, a phase space can be 

constructed for an analysis of solutions. An orbit or a trajectory is defined as the 
time varying components of solutions within the phase space. The dimension1 of 

the phase space is equal to the number of time-dependent variables or to the 

number of ODEs. Thus, equations (1)-(3) with three variables are referred to as a 

three-dimensional Lorenz model (3DLM). High-dimensional LMs contain more 

than three variables.  

 

Lorenz’s Chaotic and Non-Chaotic Attractors 

 

Depending on the competitive or collective impact of nonlinear processes and 

linear buoyancy/heating and dissipative processes, various types of solutions (i.e., 

different attractors) appear within the Lorenz model. Historically, the dependence 

of their appearance on the strength of heating measured by the parameter (r) has 
been a focus. Steady-state, chaotic, and nonlinear oscillatory solutions have been 

shown to occur under conditions of weak, moderate, and strong heating, 

respectively (e.g., Sparrow 1982; Drazin 1992)2. In Fig. 1., the three different 

types of solutions are shown using r = 20, 28, and 350, respectively. The top 

panels display solutions for control runs within the X-Y space, while bottom 

panels display the time evolution of the Y components for both control and 

parallel runs. For a steady-state solution, its orbit eventually approaches a single 

point, that is, a non-trivial equilibrium point within the X-Y space (Fig. 1a), 

appearing as a point attractor; and its amplitude remains constant over time after 

arriving at the equilibrium point. Mathematically, equilibrium points, also called 

critical points, are defined as solutions of the time-independent nonlinear system 
(e.g., no time derivatives in Eqs. (1)-(3), Guckenheimer and Holmes 1983)3. 

When the heating parameter exceeds the critical value of rc = 24.74, the 3DLM 

with r = 28 displays the so-called chaotic solution or a chaotic attractor with 

irregular oscillations. The solution’s boundary within the X-Y space appears as a 

                                                
1 The term “dimension” is conventionally used for a system of ODEs (e.g., Hirsch 

et al. 2013; Thompson and Stewart 2002). In this study, the 5DLM, 7DLM, and 

9DLM are referred to as high-dimensional or high-order Lorenz models (e.g., 

Moon et al. 2017).  
2 Similar findings for the dependence of various solutions (i.e., chaotic and limit 

cycle solutions) on the strength of heating were also reported using a two-layer, 

quasi-geostrophic model that describes the finite-amplitude evolution of a single 

baroclinic wave by Pedlosky and Frenzen (1980). 
3 In our 5D-, 7D-, and 9D LMs, we can obtain closed form solutions of trivial 

and non-trivial equilibrium points and use them to verify the numerical solutions 

of equilibrium points.  
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tilted “8” pattern.  Interestingly, when heating becomes larger (e.g., r = 350), the 

system produces a nonlinear periodic solution known as a limit cycle solution or 

a periodic attractor, as shown in Figs. 1c and 1f. Additional details on the 

characteristics of nonlinear oscillatory solutions may be found in earlier studies 
(e.g., Shimizu 1979; Sparrow 1982; Strogatz 2015) and/or recent studies (e.g 

Reyes and Shen 2019; Shen 2019a, b). Below, the impact of a tiny initial 

perturbation on three attractors, including a point attractor, a chaotic attractor, and 

a periodic attractor, is further discussed.  

 

Parallel runs with a tiny initial perturbation (∈= 10@AB) are compared to control 

runs in order to reveal the difference of initial, nearby trajectories within the phase 

space. For steady-state and nonlinear oscillatory solutions, control and parallel 

runs produce almost identical results, only appearing in red, for example, in Figs. 

1d and 1f. The runs indicate insignificant impacts by a tiny initial perturbation. In 

other words, steady-state and nonlinear oscillatory solutions are insensitive to a 

tiny change in ICs. In comparison, within the chaotic regime, two solution orbits 

whose starting points are very close to each other display very different time 
evolutions, as clearly shown in blue and red in Fig. 1e.  The phenomenon is called 

the sensitive dependence of solutions on ICs and only appears within a chaotic 

solution.  

 

Boundedness and Divergence of Chaotic Trajectories  

 

Within the chaotic regime, a sensitive dependence of solutions on ICs is referred 

to as the butterfly effect (BE, e.g., Lorenz 1993, 2008). As shown in Fig. 2a, the 

term ``butterfly’’ was partly used due to its geometric pattern within the Y-Z space 

(e.g., Lorenz 1993). A butterfly pattern with a finite size and varying curvatures 

within the phase space also qualitatively suggests an important feature of solution 

boundedness. Therefore, BE means that a tiny change in an IC can produce a very 
different time evolution of a solution for three variables (X, Y, Z). However, the 

separation (or divergence) of two orbits should be bounded by the size of a 

butterfly pattern.  

 

The average separation rate (i.e., an average rate of divergence) of nearby 

trajectories has been quantitatively measured using the Lyapunov exponent (LE, 

Wolf et al. 1985; Zeng et al. 1991, 1993). A positive LE suggests an exponential 

rate in the averaged separation of two infinitesimally nearby trajectories over an 

infinite period of time (e.g., Eqs. (25)-(26) of Shen 2014). Chaotic solutions 

within the 3DLM, as well as high-dimensional LMs, have a positive LE. Since 

the LE is defined as a long-term averaged separation, researchers often 
misinterpret the divergence of two nearby, but finitely separated, chaotic 

trajectories within the 3DLM as continuing over time and lasting forever. The 

misunderstanding also makes people believe that an unconstrained solution is due 

to the divergent nature of chaos (e.g., Hilborn 2000). In fact, in addition to a 

positive LE, solution boundedness is another major feature of a chaotic system.  
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Due to solution boundedness, a trajectory should recurve within the phase space 

(e.g., Hilborn 2000). Therefore, time-varying (local) growth rates along a chaotic 

orbit are observed (e.g., Zeng et al. 1993) and may become negative, as indicated 

by a negative finite time LE (e.g., Nese 1989; Eckhardt and Yao 1993; Ding and 
Li 2007; Bailey 2011). In other words, the infinite-time limit in the definition of 

an LE does not imply a monotonically increasing separation between two nearby 

trajectories over a long period of time. Two initial nearby trajectories can quickly 

separate and reach the bound of their separation.  

 

3. The Generalized Lorenz Model  

 

The 3DLM produces three different attractors and each attractor exclusively 

appears within the phase space, depending on the interval of system parameters. 

The 3DLM with a single-type solution suggests that either chaos or order 

exclusively exists.  By comparison, two different solutions may coexist and 

dominate system dynamics in a separate region (i.e., a different subspace) within 
the phase space within the same model, and with the same parameters, but with 

different ICs. Attractor coexistence has mainly been studied using conservative 

Hamiltonian systems (e.g., Hilborn 2000), but can also be found in the forced 

dissipative 3DLM (e.g., Yorke and Yorke 1979; Drazin 1992; Ott 2002). Below, 

we first discuss two kinds of attractor coexistence using the GLM, and then apply 

the GLM to understand the whether the 3DLM can also possess two kinds of 

attractor coexistence.  

 

Based on our recent studies (e.g., Shen, 2014-2019a), we successfully developed 

a GLM that: (1) is derived based on partial differential equations for the Rayleigh-

Benard convection4; (2) allows a large number of modes, say M modes, where M 
is an odd number greater than three; and (3) produces aggregated negative 

feedback5 that is accumulated from the feedback of various smaller-scale 

processes, yielding a larger effective dissipation in higher dimensional LMs (Shen 

2019a; Shen et al. 2019). As a result of aggregated negative feedback, a higher-

dimensional LM requires a larger critical value for the Rayleigh parameter (rc) 

for the onset of chaos. For example, the rc for the 5DLM, 7DLM, and 9DLM are 

42.9, 116.9, and 679.8, respectively, as compared to a rc of 24.74 for the 3DLM 

(Shen 2019a). Fig. 2 displays chaotic solutions obtained from the 3D, 5D, 7D, 

and 9D LMs with different heating parameters. Therefore, an intial tiny 

perturbation with the same strength may play a different role within the GLM 

with a different value of M. Such a  feature shows a dependence on the number 

                                                
4 By comparison, chaotic models in Lorenz (1996/2006, 2005) were not derived 

from physics-based partial differential equations.  
5 Negative feedback can be found within the so-called Lorenz-Stenflo system that 

extends the 3DLM with one additional ODE containing one additional mode that 
takes rotation into consideration (e.g., Xavier and Rech 2010; Park et al. 2015, 

2016).  
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of selected modes. Namely, it depends on the degree of spatial complexity 

associated with a various number of modes of the GLM.   

 

Two Kinds of Attractor Coexistence  

 

The GLM with M = 5 or M = 7 (i.e., 5DLM or 7DLM) also produces three 

different types of solutions, including a steady-state, chaotic, and limit 

cycle/torus6. More importantly, the GLM with M = 9 (i.e., 9DLM) displays two 

kinds of attractor coexistence, each with two different attractors. For the first kind 

of coexistence, both chaotic and steady-state solutions occur concurrently using 

the same model and the same parameters. The only difference is their ICs. Such 

a coexistence shares properties similar to that of the 3DLM but appears over a 

wider range of the Rayleigh parameter (e.g., 679.8 < r < 1,058), as compared to 

the small interval (e.g., 24.06 < r < 24.74) for the 3DLM.  

 

 In addition to the first kind of attractor coexistence, the 9DLM is able to produce 
the second kind of attractor coexistence, consisting of nonlinear, periodic (i.e., 

limit cycle) orbits, and steady-state solutions at large Rayleigh parameters (e.g., r 

= 1,600). The new kind of coexistence was recently documented in Shen (2019a), 

Shen et al. (2019), and Reyes and Shen (2019). Additionally, coexisting two 

periodic solutions were documented using the 9DLM with r = 1120 (e.g., Shen 

2019a).  As a result, when system parameters change at a large time scale (e.g., 

at climate time scales), different kinds of attractor coexistence may alternatively 

or concurrently appear, leading to complexities that better resemble real weather 

and climate.  

 

Two Kinds of IC Dependence and Final State Sensitivity  

 

Depending on system parameters, ICs and the dimension of the model (say the 

value of M within the GLM), a modeling system may contain one or more 

attractors7 within the phase space. Since different attractors coexist, we expect 

different kinds of solution dependence on ICs, as illustrated using the 9DLM with 

r = 680 that produces the coexistence of chaotic and non-chaotic orbits. Control 

runs apply three sets of ICs at different locations within the phase space: close to 

the non-trivial equilibrium point, near the origin (i.e., a saddle point), and at point 

(100, 100, 100, 100, 100, 100, 100, 100, 100). For parallel runs, a finite-amplitude 

perturbation (∈	= -0.9) is added into the ICs. In Fig. 3, solutions of the control 

runs are shown in blue, while results of parallel runs are displayed in green, red, 
or orange.  Top panels display the time evolution of the Y components, while 

bottom panels present solutions within the X-Y space. The model with r = 680 

                                                
6 A torus is defined as a composite motion with two (or more) oscillatory 

frequencies whose ratio is irrational (e.g., Faghih-Naini and Shen 2018).  
7 The coexistence of chaotic and quasi-periodic orbits has been recently 

documented in a modified Lorenz system by Saiki et al. (2017).  
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produces the coexistence of steady-state and chaotic orbits, displaying a 

dependence on ICs. For the first case (Figs. 3a and 3d) with the IC that is close to 

the non-trivial equilibrium point, the orbit moves toward the equilibrium point, 

producing steady-state solutions. Since the orbit spirals into the non-trivial 
equilibrium point within the X-Y space, it is also called a spiral sink solution. For 

the second case (Figs. 3b and 3e) where an IC is close to a saddle point at the 

origin but away from the non-trivial equilibrium point, solutions still approach 

the same non-trivial equilibrium point as a steady-state solution, while initially 

displaying a different time evolution as compared to the first case. On the other 

hand, for the third case (Figs. 3c and 3f), the model produces a chaotic solution, 

different from the steady-state solution. A comparison between control and 

parallel runs suggests that an initial perturbation only has a short-term impact on 

the initial transient evolution of steady-state solutions but can lead to a very 

different evolution for chaotic solutions8.  

When coexisting chaotic and regular attractors from 256 different initial 

conditions are plotted within the X-Y phase space, Figure 4 clearly shows that 
chaotic and non-chaotic orbits occupy two different regions (or two different 

subspaces). Additional details on the spatial distribution of 256 initial conditions 

may be found in Shen et al. (2019). As a result of the different regions of attraction 

for coexisting attractors, final state sensitivity may appear (e.g., Grebogi et al. 

1983) when ICs begin near the boundary of two different attractors. Such a 

sensitivity creates a different challenge for prediction.   

 

Finite and Deterministic Predictability  

 

The rate of a growing initial error with time has been used to determine 

predictability, suggesting a finite predictability in chaotic (or unstable) systems. 
Such a growth rate is proportional to the divergence of two nearby trajectories 

measured using a Lyapunov exponent. Within chaotic regimes of the 3DLM, as 

well as within the GLM that contains one positive LE and solution boundedness, 

time-varying divergence and convergence of nearby trajectories yields time-

varying growth rates and, thus, time-varying predictability. Estimated 

predictability over a short period should display a dependence on various initial 

states9. By comparison, when non-chaotic (i.e., steady-state or nonlinear periodic) 

solutions appear as a single type of solution or coexist with another type of 

solution, their predictability should be deterministic (unlimited). Stated 

conservatively, the non-chaotic solution should remain predictable until it is 

changed by time varying parameters that represent heating or dissipations.   As a 

                                                
8 Such a dependence on initial conditions, close to (or away from) the non-

trivial equilibrium point, can be shown by the following YouTube video for a 

double pendulum (between 1:00-1:20): 

https://www.youtube.com/watch?v=LfgA2Auyo1A.  
9 As a result, we agree with Prof. Arakawa that the predictability limit is not 

necessarily a fixed value (Lewis 2005). 
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result, very different intrinsic predictability may appear and depend on ICs within 

a system that possesses the coexistence of chaotic and non-chaotic attractors.  

 

4. Attractor Coexistence within the 3DLM  

 

Within chaotic solutions of the 3DLM that has no stable equilibrium points, a tiny 

perturbation can always lead to a very different time evolution.  Stated 

alternatively, within the chaotic regime, the system, in the absence of energy sinks 

for steady-state solutions, does not have a mechanism for completely removing 

the impact of a tiny perturbation on state variables. By comparison, within the 

GLM with M = 9, or higher, that possesses coexisting chaotic and steady-state 

solutions, a tiny initial perturbation may play a very different role. A tiny 

perturbation may have no long-term impact when it appears to be associated with 

a steady-state solution that approaches one of stable equilibrium points, 

suggesting that the perturbation eventually dissipates. On the other hand, a tiny 

perturbation may lead to a large impact on the time evolution of the chaotic 
solution. As a result, the 9DLM with a dual role for a tiny initial perturbation over 

a wide range of the heating parameter, as well as other features such as 

hierarchical scale dependence,  is more realistic than the classical 3DLM with 

typical parameters. On the other hand, we may ask whether the 3DLM with 

different parameters may also produce two kinds of attractor coexistence, 

providing additional support to the findings of the GLM.   

 

Next, we first discuss the coexistence of the 3DLM with typical parameters that 

include � = 10.		We then address the question of whether � = 10 is a magic 

choice. As simply shown in the animation, https://goo.gl/scqRBo, the 3DLM with 

the same parameters, including r = 24.4, � = 10, and b = 8/3, but with different 

ICs, produces two types of solutions that include chaotic or steady-state solutions, 

yielding the first kind of attractor coexistence. However, such a coexistence only 

appears over a very small range of r, giving the length of an interval less than 0.7 

(i.e., 24.06 < r < rc = 24.74), and, thus, its characteristics and potential role in 

revealing the nature of weather has not been well appreciated. 

 

For the past 50 years, although various types of solutions for Lorenz (1963) have 

been documented, chaotic solutions have been the main focus. As discussed in 

the main text, since chaotic solutions appear over a finite range of parameters, 

their applicability in revealing the nature of weather depends on the realism of 
not only the models employed but also model parameter values.  In his book in 

1993, Lorenz humbly expressed that it may not have been possible for him to 

discover the butterfly-pattern solution if a realistic value of � = 1	was used, as 

shown below: 

`` 

I was lucky in more ways than one. An essential constant of the model is the 

Prandtl number -- the ratio of the viscosity of the fluid to the thermal conductivity. 

Barry had chosen the value 10.0 as having the order of magnitude of the Prandtl 
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number of water. As a meteorologist, he might well have chosen to model 

convection in air instead of water, in which case he would probably have used 

the value 1.0. With this value the solutions of the three equations would have been 

periodic, and I probably would never have seen any reason for extracting them 
from the original seven. 

‘’ 

Therefore, one may wonder how fortunate Prof. Lorenz was and whether a 

realistic value of � = 1 may have influenced our view on the nature of weather. 

We make an attempt of addressing the question by analyzing a GLM with M = 9 

and examining a 3DLM with	� = 1. As discussed in Shen (2019a), the GLM with 

M = 9 has stable, non-trivial equilibrium points for all � > 1 when � = 10 and b 

= 8/3. To have stable, non-trivial equilibrium points for � = 1	within the 3DLM, 

we chose b = 2/5.	 Such a choice leads to two kinds of attractor coexistence, a 

unique feature first identified within the 9DLM (Shen 2019a). With � = 1 in the 

3DLM, the first kind of coexistence includes chaotic and steady-state solutions at 

a moderate heating parameter (e.g., r = 170, as shown in Fig. 5). Table 1 lists 

initial conditions for the results provided in Fig. 5. Thus, chaotic solutions may 

still appear within the 3DLM for a realistic value of � = 1,	but they coexist with 

steady-state solutions. The appearance of chaotic solutions depends not only on 

the range of the heating parameter but also on the ICs. Additionally, the second 

kind of coexistence that consists of a limit cycle and a steady-state solution 

appears  at a large heating parameter (e.g., r = 250, not shown). 
 

Both traditional and new model configurations with (�, �) = (10, 8/3) and 
(1, 2/5), respectively, can produce chaotic solutions. For the traditional 

configuration that has been well applied in numerous studies since Lorenz 

(1963a), all three equilibrium points are unstable when � > 24.74. The stability 

of the three equilibrium points for � = 10, as well as for � = 1, is illustrated in 

Fig. 6. The non-existence of stable equilibrium points within the chaotic regime 

makes it easier to obtain chaotic solutions. However, no tiny, initial perturbation 

can completely lose its impact within the chaotic regime. We may interpret this 
as a finding that a tiny, initial perturbation cannot completely dissipate (before 

leading to a large impact). By comparison, for the new configuration of � = 1, 

while the origin is still a saddle point, the two, non-trivial equilibrium points are 

stable (Fig. 6b). The existence of stable equilibrium points enables the 

coexistence of chaotic and steady-state solutions, the latter of which has no long-

term memory regarding a tiny, initial perturbation.  

 

As a result of coexistence for � = 1 within the 3DLM, a proper choice of initial 

conditions is required in order to simulate a chaotic solution. Without knowing 
this, Prof. Lorenz thought it may have been impossible to obtain a “strange’’ 

solution if � = 1 was first used in the Saltzman (1962) model, giving no 

motivation for him to work on the 3DLM. In other words, the value of � = 10 

used in the original study (e.g., Saltzman 1962) was indeed a “fortunate” choice 

so that an unexpected irregularly oscillatory solution could be revealed, inspiring 
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Prof. Lorenz to develop the 3DLM in order to discover interesting chaotic 

features.  However, on the other hand, we now understand that such a 

configuration can only depict a partial picture for the nature of weather. Based on 

our results and analysis, a realistic system should include physical processes for 
(some of) the tiny disturbances in order to completely dissipate.  Since it produces 

the coexistence of chaotic and steady-state solutions and since the steady-state 

solution has no long-term memory of tiny perturbations, the 3DLM with the new 

configuration of � = 1 satisfies the objective.  Such a system, which is similar to 

the 9DLM that produces two kinds of coexisting attractors, provides a more 

realistic view on the true nature of weather than the original 3DLM with a typical 

configuration. The above results support the idea that two kinds of attractor 

coexistence should be taken into consideration to reveal the nature of weather.  

 

 

5. A Refined View on the Nature of Weather 

 

 

Within the forced dissipative 3DLM, chaotic solutions appear within a finite 

range of parameters (e.g., heating parameter), bounded on one side by stable, 

steady-state solutions and on the other side by nonlinear periodic solutions. Since 

climate and weather involve open systems (e.g., McGuffie and Henderson-Sellers 

2014), an assumption of constant parameters within numerical simulations using 

the 3DLM, as well as high-dimensional LMs, is not realistic (e.g., Daron and 

Stainforth 2015). Time varying parameters that lead to different attractors should 

be used in models for realistic climate or weather (Shen et al. 2020, in 

preparation). For example, when a moderate heating becomes weaker (or 
stronger), a steady-state solution (or a limit cycle) may appear. Since regular and 

chaotic solutions may alternatively appear, chaotic solutions alone may not be 

able to represent the entirety of weather.  

 

 

Additionally, our results show that chaotic and non-chaotic solutions may coexist 

and two kinds of attractor coexistence may alternatively appear within the 9DLM 

using time varying parameters. The analysis suggests a need to refine our view of 

weather by taking the dual nature associated with attractor coexistence into 

consideration. To this end, we suggest, contrary to the traditional view that 

weather is chaotic, that weather is, in fact, a superset that consists of both chaotic 

and non-chaotic processes, including both order and chaos. 
 

Vacillation, Coexisting Two LCs, and Coexisting Two Time-scale Orbits 

 

The (potential) occurrence of a regular nonlinear periodic solution (i.e., limit 

cycle) in the atmosphere was first illustrated by laboratory experiments using 

dishpans. Based on experiments by David Fultz (Fultz et al. 1959) and Raymond 

Hide (Hide 1953), Lorenz (1993) suggested three types of solutions, including: 
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(1) steady state solutions, (2) irregular chaotic solutions, and (3) vacillation. 

“Amplitude vacillation” is defined as a solution whose amplitude grows and 

periodically decays in a regular cycle (Lorenz 1963c; Ghil and Childress 1987; 

Ghil et al. 2010). Studies by Pedlosky (1972), Smith (1975), and Smith and Reilly 
(1977) found that amplitude vacillation can be viewed as a limit cycle solution. 

By conducting a study for observational characteristics of low-frequency 

variability, Ghil and Robertson (2002) suggested that 40-day, intra-seasonal 

oscillations may arise from a bifurcation off the blocking flow and may be 

represented by a limit cycle with a period of 40 days. 

 

As discussed earlier, we showed that the 3DLM with a realistic value of � = 1 

also generates two kinds of attractor coexistence. Additionally, the coexistence of 

two stable limit cycle solutions was documented using the Lorenz 1984 model 

(Lorenz 1984, 1990; Masoller et al.  1992; Pielke and Zeng 1994; Veen 2002a, b; 

Wang et al. 2014) that also contains three types of solutions, including steady 
state, periodic solutions, and chaotic solutions. Using a seasonally varying forcing 

term with a time scale of 12 months, Lorenz (1990) showed that chaos appears 

during winter (within a specific range of parameters) and two coexisting LCs 

during summer (within a different range of parameters). Such numerical results 

also support the view of the dual nature of chaos and order that alternatively 

appear. The above results suggest that once summer begins and has been 

observed, a better predictability for a limit cycle solution may be expected during 

each cycle of the solution in summer, as compared to that in winter. More 

recently, Lucarini and Bodai (2019) applied a multistable system with coexisting 

attractors to reveal the bistability of the climate system with both positive and 

negative feedback (e.g., Garashchuk et al. 2019; Lucarinii and Bodai 2019). 
 

Coexisting solutions at two time scales, that are not the same as the coexisting 

attractors discussed above, have also been documented within the scientific 

literature.  Related studies additionally support the refined view on the nature of 

weather. For example, co-existence of fast and slow manifolds has been discussed 

by Lorenz (1986, 1992), Lorenz and Krishnamurthy (1987), and Curry et al. 

(1995).  Both types of solutions in Lorenz (1986) are non-chaotic. By comparison, 

fast and slow “variables” that are chaotic may also coexist within coupled systems 

(e.g., Pena and Kalnay 2004; Mitchell and Gottwald 2012). In fact, an analysis 

using a singular perturbation method (Bender and Orszag 1978) indicates that the 

GLM also possesses the coexistence of slow and fast variables that correspond to 

large and very small spatial modes (e.g., Eq. (2) and Eq. (4) of Shen 2019a in a 
high-dimension phase space).  A current trend is to include time-varying 

parameters to increase the complexities of low order systems (e.g.,   Lucarini 

2019). It can be shown that a higher dimensional Lorenz model (e.g., 7DLM) can 

be viewed as a lower-dimensional Lorenz model (e.g., 5DLM) with a period 

forcing, suggesting that the complexities of spatial mode-mode interaction may 

lead to the temporal complexities.  
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Error Saturations and Computational Chaos 

 

In real-world weather models, the appearance of (fully) chaotic solutions may be 

indicated by error saturations, defined as follows. A logistic equation has been 
used to describe the evolution of root mean square (rms) average forecast error 

for ensemble runs (Lorenz 1969b, 1996; Nicolis 1992; Kalnay 2003; Zhang et al. 

2019). Given an initial condition with a small value, the solution of the logistic 

equation has time varying, non-negative growth rates (e.g., growing at an initial 

larger growth rate, then at a nonlinear smaller growth rate, and eventually 

approaching a constant defined as a saturated error that has a zero growth rate).  

The occurrence of error saturation at a fully nonlinear stage indicates a 

comparable number of members with positive and negative error growth rates at 

a given time. Such a result is consistent with the features of a positive LE and 

solution boundedness associated with a specific chaotic solution.  

 

The error growth model with non-negative growth rates may describe the 
statistical behavior of the system within which the majority of small errors tends 

to grow. By comparison, the error growth model cannot accurately represent the 

initial, transient evolution of the rms averaged forecast error associated with 

large ensemble members with periodic or decaying components whose growth 

rates are small. For periodic solutions such as vacillation (Lorenz 1969b), an 

ensemble averaged error may grow (or decay) with time when a large (or small) 

ensemble number of growing errors and a small (or large) ensemble number of 

decaying errors are averaged. As a result, when oscillatory waves were simulated, 

their rms errors may oscillate with time rather than become saturated. For 

example, oscillatory rms errors appeared after 40-day simulations in Figure 5 of 

Liu et al.  (2009) who performed global simulations using the Community 
Atmosphere Model (Collins et.  al. 2004). An additional example can be found in 

30-day simulations of multiple African Easterly Waves (AEWs) using a global 

mesoscale model that produced oscillatory correlation coefficients (Shen 2019b).  

 

On the other hand, it should be noted that error saturations may appear in 

association with computational chaos that is a numerical artifact. For example, 

Lorenz (1989) presented several cases in order to show that while differential 

equations of a model may possess nonlinear limit cycle solutions, the 

corresponding discrete version of the model with large time steps produces a 

sensitive dependence of solutions on the initial condition, referred to as 

computational chaos. As a result, the appearance of error saturations (as well as 

positive LE) that appear within numerical models does not necessarily represent 
the chaotic nature of weather. Due to the appearance of computational chaos, an 

estimate of a practical predictability limit using saturation errors should be 

interpreted with caution, as it does not necessarily represent an intrinsic 

predictability limit for real weather.   

 

 



 14 

5. Concluding Remarks  

 

The statement of “weather is chaotic” has been introduced to indicate the chaotic 

nature of weather with a finite intrinsic predictability.  The statement has also 
been cited to embrace a practical predictability limit of two weeks.  The finite 

intrinsic and practical predictability are indeed largely derived from the chaotic 

and unstable solutions of Lorenz models (e.g., Lorenz 1963a, 1969a). In other 

words, the current view of “weather is chaotic” does not take into consideration 

other types of solutions within original Lorenz models and new types of solutions 

within newly developed generalized Lorenz models.  

 

In this study, we first applied the aforementioned models in order to reveal three 

types of solutions and two kinds of attractor coexistence, indicating different 

intrinsic predictability for different solutions. We then suggested a refined view 

on the dual nature of chaos and order in weather. In contrast to the current view 

that focuses on chaotic solutions with a predictability limit (of two weeks), our 
refined view suggests that coexisting chaotic and non-chaotic systems can have 

different intrinsic predictability. The refined view may unify the theoretical 

understanding of different predictability within Lorenz models with recent 

numerical simulations of advanced global models that can simulate large-scale 

tropical waves beyond two weeks (e.g., Shen 2019b; Judt 2020).  

 

 The refined view with a duality of chaos and order is fundamentally different 

from the Laplacian view of deterministic predictability and the Lorenz view of 

deterministic chaos. The refined view that is not too optimistic nor too pessimistic 

suggests both potential and challenges. For non-chaotic processes with steady-

state or nonlinear periodic solutions, their intrinsic predictability is deterministic 
(e.g., up to the lifetime of a dissipative solution or the time scale of the forcing) 

and their practical predictability can be continuously increased by improving the 

accuracy of the model and the initial conditions. For limit cycle solutions that may 

be associated with computational chaos, accurate simulations with better 

predictability, as compared to chaotic solutions, can be obtained by increasing 

temporal resolutions and/or removing redundant dissipations.  To reveal longer 

predictability or better estimates on predictability in model and observation data, 

we will focus on developing schemes for the detection of chaotic and non-chaotic 

solutions (e.g., Sprott and Xiong 2015; Reyes and Shen 2019) and examining the 

roles of butterfly effects in multiscale simulations using high-resolution global 

models. 

 
In addition to the chaotic nature of weather with a finite predictability, another 

major influential impact of the 3DLM is that the sensitive dependence on initial 

condition, referred to as the butterfly effect of the first kind, has been inaccurately 

metaphorized to indicate the ability of a butterfly flap in creating a tornado, 

referred to as the butterfly effect of the second kind (Shen 2014). To understand 

their roles in reality and numerical models, the two different kinds of butterfly 
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effects are being analyzed based on a comprehensive review of historical 

literature and recent understanding of chaos dynamics. 
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Table 1: Initial conditions (ICs) for revealing the coexistence of two attractors for σ = 1,
b = 0.4, and r = 170 within the 3DLM. Xc = Yc =

√

b(r − 1) and Zc = (r − 1). The six
rows provide the ICs for Fig. A1.

X Y Z
Xc Yc + 1 Zc

-Xc −Yc + 1 Zc

0 1 0
-76.72346293 37.62433028 -146.96230812
-27.75526885 167.67883615 3.66782724
136.44623635 99.45689394 -19.76741851



Figure 1: Three types of solutions within the 3DLM. Left, middle, and right panels display steady-state, chaotic,
and limit cycle solutions at small, moderate, and large heating parameters (i.e., r = 20, 28, and 350), respectively.
The solutions are categorized into a point attractor, a chaotic attractor, and a periodic attractor, respectively.
Top panels show orbits within the X − Y space and bottom panels depict the time evolution of Y. Blue lines
provide solutions from control runs. To display results from parallel runs, red lines are added in the bottom
panels. Sensitive dependence on initial conditions is shown in panel (e) with two visible lines. Two panels, (b)
and (e), are reproduced from Shen (2019b).



Figure 2: Chaotic solutions in the X − Y −Z phase space within the 3D, 5D, 7D, and 9D Lorenz models (LMs).
Panels (a)-(c) use the same initial conditions with Y = 1 and the remaining as zero, while panel (d) uses an IC
with 100 for all variables. Variables (X, Y, Z) are normalized by 2

√

r − 1, 2
√

r − 1, and (r − 1) , respectively. A
larger heating parameter is required for the onset of chaos in a higher-dimensional LM. Also see detailed analysis
of solutions in Shen (2016) and Shen (2019a).



Figure 3: Solutions of the GLM with M = 9 and r = 680. Initial conditions for the three cases
are placed near the non-trivial critical point (a,d), the origin (i.e., trivial critical point) (b,e), and at
(100, 100, 100, 100, 100, 100, 100, 100, 100) (c,f). Top panels show the time evolution of Y for t ∈ [0, 2.5], while
bottom panels display the corresponding solutions t ∈ [0, 10] within the X − Y space. Control and parallel runs
are denoted by ’C’ and ’P’, respectively. A finite-amplitude perturbation (ǫ = −0.9) is added into the parallel
runs. Two panels, (c) and (f), are reproduced from Shen (2019a).



Figure 4: Coexistence of chaotic and non-chaotic orbits starting with 256 different initial conditions(ICs) for
τ ∈ [0.625, 5]. Chaotic orbits recurrently return back to the saddle point at the origin. Non-chaotic orbits
eventually approach one of two stable critical points as shown in large blue dots. Chaotic and non-chaotic orbits
occupy different regions of attraction within the phase space.



Figure 5: A co-existence of chaotic (c, d) and non-chaotic (a, b, e, f) solutions using the same parameters for
σ = 1, b = 0.4, and r = 170 within the 3DLM. Blue and red lines display solutions from the control and parallel
runs, respectively. Initial conditions for the results in six panels are listed in Table 1.



Figure 6: Local behavior near the two non-trivial critical points for the 3DLM with σ = 10 (a) and σ = 1 (b).
Lighter blue dots indicate the locations of orbits at earlier times. A red dot indicates the origin, which is a saddle
point. Orbits in panel (a) spiral away from the non-trivial critical points while orbits in panel (b) spiral toward
the non-trivial critical points.


