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What is Climate Change?

Global Warming is an increase in the global
annual average heat content measured in
Joules.

Climate Change is any multi-decadal or longer
alteration in one or more physical, chemical
and/or biological components of the climate
system.

Global Warming is a Subset of Climate



The Earth’s climate system is highly nonlinear:
inputs and outputs are not proportional,
change is often episodic and abrupt, rather
than slow and gradual, and multiple equilibria
are the norm.

The assumption of a stable climate system, in
the absence of human intervention, is a
mischaracterization of the behavior of the real
climate system.




The Climate System

Atmosphere
- Temperature
+ Humidity, clouds, and winds
- Procipriation
- Atmospheric trace gas and
acrosol distribution

Volcanoes




Two Approaches to Assessing Vulnerability

Top-down global model (GCM) driven
perspective (IPCC; U.S. National Assessment,
etc.)

contrasted

with a Bottom-up resource based view



Framework depicting two interpretations of vulnerability to climate change: (left) outcome vulnerability and (right)

contextual vulnerability. Adapted by D. Staley from the works of Fiissel [2009] and O’Brien et al. [2007]
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Conceptual framework showing how radiative forcing fits into the current climate policy framework (from National
Research Council, 2005).
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Conceptual framework of climate forcing, response, and feedbacks under present-day climate conditions. Examples of
human activities, forcing agents, climate system components, and variables that can be involved in climate response
are provided in the lists in each box (from National Research Council, 2005).
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IPCC Conclusions

Working Group |

"Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are
unprecedented over decades to millennia".[Z4l

"Atmospheric concentrations of carbon dioxide, methane, and nitrous oxide have increased to levels
unprecedented in at least the last 800,000 years" .[75]

Human influence on the climate system is clear.lZ8l |t is extremely likely (95-100% probability)ZZ that
human influence was the dominant cause of global warming between 1951 and 2010.[78l

Working Group Il

"Increasing magnitudes of [global] warming increase the likelihood of severe, pervasive, and irreversible
impacts"[Z8

"A first step towards adaptation to future climate change is reducing vulnerability and exposure to
present climate variability"Z2

"The overall risks of climate change impacts can be reduced by limiting the rate and magnitude of
climate change"l%8

Working Group Il

Without new policies to mitigate climate change, projections suggest an increase in global mean
temperature in 2100 of 3.7 to 4.8 °C, relative to pre-industrial levels (median values; the range is
2.5 to 7.8 °C including climate uncertainty).8%

"(T)he current trajectory of global annual and cumulative emissions of GHGs is not consistent with
widely discussed goals of limiting global warming at 1.5 to 2 degrees Celsius above the pre-
industrial level."21l Pledges made as part of the Cancun Agreements are broadly consistent with
cost-effective scenarios that give a "likely" chance (66-100% probability) of limiting global warming
(in 2100) to below 3 °C, relative to pre-industrial levels.l82
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Global Climate Model
Multidecadal
Projection

Community of

Practice/ Experts
[Stakeholders]

Guidance to the
community including
policymakers

Downscale to regions
directly- or using
regional atmospheric
or statistical Modeling

Impact modeling (e.g.
habitat loss using site
specific ecosystem
model)




International Treaties,
National and Local
Laws and Regulations

Risks of Concern
(e.g. habitat loss)
Community of
Practice/ Expert
Opinion

Guidance to
Community

Large, Regional and Local
Environmental Stressors Plausible 'worse'
including Long Term Changes case scenarios
In Weather
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Bottom-up Resource-Based Risk Assessment
More Inclusive Than the Current Focus on the
Top-Down Approach of the IPCC

Water resources
Ecosystem Health
Energy

Human Health
Food



Observed Climate Changes



From https://data.giss.nasa.gov/gistemp/graphs_v4/graph_data/GISTEMP_Seasonal_Cycle_since_1880/graph.png

GISTEMP Seasonal Cycle since 1880

1880
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Jan 2021

Anomaly (°C) (w.r.t 1980-2015)

Seasonal cycle from MERRAZ2. Figure: NASA/GISS/GISTEMP v4
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From Ryan Maue on twitter

JRA-55 2-meter Temperature Anomaly [°C] Global | 4x Daily Reanalysis 2021 YTD: 0.20 °C | MTD: 0.13 °C
1981-2010 Climatology | @RyanMaue | climatlas.com Thru: 18227FEB2021
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Ice Extent (10° km')

lce Area (10° km

18
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https://earth.gsfc.nasa.gov/cryo/data/current-state-sea-ice-cover
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https://earth.gsfc.nasa.gov/cryo/data/current-state-sea-ice-cover
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Extent (millions of square kilometers)

From http://nsidc.org/arcticseaicenews/

Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)

— 2020-2021

-=2011-2012

—1981-2010 Median
Interquartile Range
Interdecile Range

Nov

Dec Jan Feb Mar

23 Feb 2021

National Snow and Ice Data Center, University of Colorado Boulder



From http://nsidc.org/arcticseaicenews/

Sea lce Concentration, 23 Feb 2021

- Greenland

Europe

median ice edge 1981-2010
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From http://nsidc.org/arcticseaicenews/

Sea lce Extent, 23 Feb EDE_l
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From @Ryan Maue

ERAS5 Global Temperature Anomaly [°C] g e
February 2021
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From @Ryan Maue

JRA-55 Global Temperature Anomaly [°C] - Db R e L
February 2021
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Changes in Ocean Heat Content most accurate Way
to diagnose TOA global average radiative
imbalance (i.e. climate system heat changes —
“global warming”) on seasonal and longer time

scales

TOA Global Average Radiative Imbalance =
TOA Global Average Radiative Forcing + TOA Global Average Radiative Feedbacks

Pielke Sr., R.A., 2003: Heat storage within the Earth system. Bull. Amer. Meteor. Soc.,
84, 331-335. http://pielkeclimatesci.wordpress.com/files/2009/10/r-247.pdf



Seminal paper on this subject: Ellis . J.S., T.H. Vonder Haar, S. Levitus, and A.H. Oort
1978: The annual variation in the global heat balance of the Earth. J. Geophys. Res.,
83, 1958-1962.

GLOBAL HEAT BALANCE
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Ocean Heat Content [x 1022 J |

48

42

From https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global_en.html

Trend :

5.88 + 0.41 x 1022 J / decade v

Japan Meteorological Agency

1970 1980 1990 2000 2010 2020
Year



From https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global_en.html

Oceans have a significant impact on the global climate because they
cover about 70% of the earth's surface and have high heat capacity.
According to the Intergovernmental Panel on Climate Change Fifth
Assessment report (IPCC, 2013), more than 60% of the net energy
increase in the climate system from 1971 to 2010 is stored in the
upper ocean (0 — 700 m), and about 30% is stored below 700 m.
Oceanic warming results in sea level rises due to thermal
expansion, and impacts marine ecosystems.

It is virtually certain that globally integrals of 0 to 2000m ocean heat
content (OHC) rose between 1955 and 2020 at a rate of 5.88 + 0.41
x 10%2) per decade as a long-term trend with interannual variations
(the range indicated by '+' represents a 95% confidence level). A rise
of 0.020 + 0.001°C per decade in the globally averaged 0 to 2000m
ocean temperature accompanied the OHC increase. Oceans
exhibited marked warming since the mid-1990s.

These long-term trends can be attributed to global warming caused by
increased concentrations of anthropogenic greenhouse gases such
as CO, as well as natural variability.



Model-Real World Comparisons



 Weather Prediction Models (hours out to 10-14
days or so) are constrained by real world
observations. Many variables can be assumed
constant over this time period (e.g. SSTs,
vegetation type)

* Climate Models (progressively longer time
periods do not have the ability to assume
variables are constant, nor have observed data to
prevent (constrain) models from deviating from
reality.
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Tropical Mid-Tropospheric Temperature Variations

Models vs. Observations

5-Year Averages, 1979-2017 Trend line crosses zero at 1979 for all time series
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39 IPCC Climate Model Simulations CMIP6
300-200 hPa Temperature Trend 1979-2019

Model Average +0.40 °C/decade

i.e. “Scientific Consensus”
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2.0

1.5

1.0

0.5

5-yr Running mean 300-200hPa Tropical Temperature Anomalies
CMIP-6 (Historical + ssp245 after 2014)

1979-2019 Model Mean Trend +0.40 °C/decade

2019-2050 Model Mean Trend +0.50 °C/decade

Every model 5-yr detrended variance (except MPI-LR)
exceeds observations on average by four

times (negative feedbacks keep system near trend

line)

1975 1980 1985 1990 1995 2000

2005

2010

2015

All time series trends intersect at zero in 1979
and based on 1979-2019 only
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John R. Christy, The University of Alabama in Huntsville



Examples of Climate Model Prediction
Shortcomings

1. Stephens et al. (2010) wrote “models produce
precipitation approximately twice as often as that
observed and make rainfall far too lightly...The
differences in the character of model precipitation
are systemic and have a number of important
implications for modeling the coupled Earth
system ...little skill in precipitation [is] calculated
at individual grid points, and thus applications
involving downscaling of grid point precipitation
to yet even finer-scale resolution has little
foundation and relevance to the real Earth
system.”



2. van Haren et al. (2012) concluded from their study with
respect to climate model predictions of precipitation
that “An investigation of precipitation trends in two
multi-model ensembles including both global and
regional climate models shows that these models fail
to reproduce the observed trends... A quantitative
understanding of the causes of these trends is needed
so that climate model based projections of future
climate can be corrected for these precipitation trend
biases.. To conclude, modeled atmospheric circulation
and SST trends over the past century are significantly
different from the observed ones.”



3. Xu and Yang (2012) find that without tuning
from real world observations, the model
predictions are in significant error. For
example, they found that “the traditional
dynamic downscaling (TDD) [i.e. without
tuning) overestimates precipitation by 0.5-1.5
mm d-1...The 2-year return level of summer
daily maximum temperature simulated by the
TDD is underestimated by 2-6C over the
central United States-Canada region."



https://scitechdaily.com/princeton-study-new-climate-models-with-high-climate-sensitivity-are-implausible/

4. Princeton Study: New Climate Models With High
Climate Sensitivity Are Implausible

“Researchers at Princeton University and the
University of Miami reported that newer models
with a high “climate sensitivity” — meaning they
predict much greater global warming from the
same levels of atmospheric carbon dioxide as
other models — do not provide a plausible
scenario of Earth’s future climate.”



Human Climate Forcings



Human Climate Forcings

The influence of the human input of CO, and
other greenhquse_lﬁ_gases on rechlonaI andzglobal
radiative heating [Focus of IPPC]

The influence of human-caused aerosols on
re IIDOCnCa]l (and global) radiative heating [Included
in

The effect of aerosols on clouds and precipitation

The influence of aerosol deposition (e.g. soot;
nitrogen) on climate

The effect of land cover/ land use on climate

Tle)e biogeochemical effect of added atmospheric
2






From Marshall et al. 2004

Pre-1900s

]

Open Water

EvGrn NL Tree

Decid BL Tree

EvGrn BL Tree

Grasses

Shrubs

Mixed Woodland
Crop/Mixed Farming
Slough, Bog, or Marsh
Urban/Roads, Rock, Sand
Saw Grass/Other Marshes
EvGrn Shrub Wetland
Mangroves

Decid NL/Swamp (Cypress)
Wet Prairie Marsh

Mixed Residential

Woody Wetlands

Saltwater Marsh
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e Climate Misinformation



Erroneous Claim: Strong Polar Jet Confines Cold Air To Arctic

-
Polar Vortex Explained
The polar vortex is a large area of low pressure and cold air over Earth’s
North and South Poles.When the jet stream weakens, it becomes
wavier, allowing that cold air to dip southward in places while warmer

air pushes northward elsewhere.

Stable polar A large pressure difference

e helps keep a strong jet
stream on a straighter
path, which keeps the cold
air over the Arctic

R

———— —_— f;j’;; Wavy polar
_.6_ - ,V-.rJ-—E—.T sTREA vortex

: ': >'_"-' -;'501\

When the jet stream
weakens, it becomes
wobblier, allowing cold
Arctic air to move
southward

SOURCES: NOAA; Scientific American PAUL HORN / InsideClimate News
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Figure 3.20: Schematic illustration of thickness advection and vorticity advection associated
with extratropical cyclone development. The 700 mb height contours (solid lines), 1000-500
mb thickness contours (dashed lines), and surface frontal location are given in (a). The 500
mb height contours (solid lines) and surface frontal location are shown in (b).



Chase et al2015: Bracketing mid-tropospheric temperatures in the Northern Hemisphere: An observational study 1979
- 2013. J. Climatol. Weather Forecasting

We examine mid-tropospheric temperatures in the Northern Hemisphere
using the 500 mb pressure surface from reanalysis data as a
representative level. This standard analysis level is significant
meteorologically (i.e. for frontal identification and jet stream dynamics)
and climatologically (e.g. changes in long term front and jet structures
would be expected to extend throughout the troposphere as would
tropospheric warming). We find that 500 mb temperatures are bracketed
between about —42°C and —3°C with very few excursions beyond these
brackets suggesting a limiting physical process or processes. In this paper
we update the data for the —42°C limit which we have proposed in
previous papers, document the —3°C limit for the first time, and briefly
discuss the possible physical mechanisms responsible for this observed
temperature bracketing concluding that the limits on both maximum and
minimum temperatures are due to convective processes. This self-
regulation of tropospheric temperatures [by baroclinic instability]
constrains changes in jet stream and baroclinic storm dynamics and
therefore constrains changes in climate variability.
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Conclusions

Is Climate Change an existential threat?
Use inclusive Contextual Vulnerability Approach to assess.
Observed Climate Change

Climate always has changed even without the effects of human activities. There is
no “stable” climate.

Model-Real World Comparisons

Models have poor demonstrated skill at prediction changes in regional climate
statistics on multidecadal time scales

Human climate Forcings

Human forcing involve much more than the radiative effects of added CO2 and
other GHGs.

Climate Misinformation

Claims of erroneous presentations of climate dynamics should be robustly
assessed and either refuted or confirmed.
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